Previous |  Up |  Next

Article

Title: On the terminal value problem for differential equations with deviating arguments (English)
Author: Staikos, V. A.
Author: Tsamatos, P. Ch.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 21
Issue: 1
Year: 1985
Pages: 43-49
.
Category: math
.
Keyword: differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions
MSC: 34A12
MSC: 34K05
idZBL: Zbl 0586.34056
idMR: MR818306
.
Date available: 2008-06-06T06:14:23Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107214
.
Reference: [1] C Avramescu: Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires.Ann. Mat. Pura Appl., 81 (1969), 147-167. Zbl 0196.10701, MR 0249738
Reference: [2] T. G. Hallam: A comparison principle for terminal value problems in ordinary differential equations.Trans. Amer. Math. Soc., 169 (1972), 49-57. Zbl 0257.34012, MR 0306611
Reference: [3] T. G. Hallam G. Ladas, V. Lakshmikantham: On the asymptotic behavior of functional differential equations.SIAM J. Math. Anal., 3 (1972), 58-64. MR 0315247
Reference: [4] J. Kurzweil: On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for $t \to - \infty$.Časopis Pěst. Mat., 96 (1971), 229-238. Zbl 0218.34065, MR 0298164
Reference: [5] G. Ladas, V. Lakshmikantham: Global existence and asymptotic equilibrium in Banach spaces.J. Indian Math. Soc., 36 (1972), 33-40. Zbl 0273.34040, MR 0318622
Reference: [6] G. Ladas, V. Lakshmikantham: Asymptotic equilibrium of ordinary differential systems.Applicable Anal., 5 (1975), 33-39. Zbl 0344.34036, MR 0508580
Reference: [7] E.-B. Lim: Asymptotic behavior of solutions of the functional differential equation $x' = A x(\lambda t) + B x(t)$, $\lambda > 0$.J. Math. Anal. Appl., 55 (1978), 794-806. MR 0447749
Reference: [8] A. R. Mitchell, R. W. Mitchell: Asymptotic equilibrium of ordinary differential systems in a Banach space.Math. Systems Theory, 9 (1976), 308-314. Zbl 0334.34052, MR 0463603
Reference: [9] L. Pandolfi: Some Observations on the Asymptotic Behavior of the Solutions of the Equation $\dot{x} = A(t)x(\lambda t) + B(t)x(t)$, $\lambda > 0$.J. Math. Anal. Appl., 67 (1979), 483-489. MR 0528702
Reference: [10] V. A. Staikos: Differential Equations with Deviating Arguments-Oscillation Theory.(unpublished manuscripts).
Reference: [11] V. A. Staikos: Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments.(in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716. MR 0567287
.

Files

Files Size Format View
ArchMath_021-1985-1_6.pdf 622.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo