| Title:
             | 
Monotonicity properties of the linear combination of derivatives of some special functions (English) | 
| Author:
             | 
Došlá-Tesařová, Zuzana | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
21 | 
| Issue:
             | 
3 | 
| Year:
             | 
1985 | 
| Pages:
             | 
147-157 | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
33C10 | 
| MSC:
             | 
34C10 | 
| idZBL:
             | 
Zbl 0596.33009 | 
| idMR:
             | 
MR833125 | 
| . | 
| Date available:
             | 
2008-06-06T06:14:56Z | 
| Last updated:
             | 
2012-05-09 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/107227 | 
| . | 
| Reference:
             | 
[1] M. Háčik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y" + q(t) y = 0$ with regard to the basis $[\alpha,\beta]$.Arch. Math. (Brno) 8, (1972), 79-83. MR 0326063 | 
| Reference:
             | 
[2] E. Pavlíková: Higher monotonicity properties of i-th derivatives of solutions of $y" + ay' + by = 0$.Acta Univ. Palac. Olom., Math. 73 (1982), 69-77. MR 0702609 | 
| Reference:
             | 
[3] S. Staněk J. Vosmanský: Transformations between second order linear differential equations.(to appear). | 
| Reference:
             | 
[4] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$.Arch. Math. (Brno) 2 (1974), 87-102. MR 0399578 | 
| Reference:
             | 
[5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions.Arch. Math. (Brno) 1 (1977), 55-64. MR 0463571 | 
| Reference:
             | 
[6] J. Vosmanský: Some higher monotonicity properties of i-th derivatives of solutions $y" + a(t)y' + b(t)y = 0$.Ist. mat. U. D., Univ. Firenze, preprint, No. 1972/17. | 
| Reference:
             | 
[7] D. V. Widder: The Laplace transform.(Princeton University Press, Princeton, 1941). Zbl 0063.08245, MR 0005923 | 
| . |