Previous |  Up |  Next

Article

Title: On $f$-best approximation in topological spaces (English)
Author: Narang, T. D.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 21
Issue: 4
Year: 1985
Pages: 229-233
.
Category: math
.
MSC: 41A50
MSC: 41A65
idZBL: Zbl 0585.41029
idMR: MR833135
.
Date available: 2008-06-06T06:15:26Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107238
.
Reference: [1] G. C. Ahuja, T. D. Narang: On best simultaneous approximation.Nieuw Arch. Wisk., 27 (1979), 255-261. Zbl 0495.41009, MR 0535575
Reference: [2] M. W. Bartelt, H. W. McLaughlin: Characterizations of strong unicity in approximation theory.J. Approximation Theory, 9 (1973), 255-266. Zbl 0273.41019, MR 0372500
Reference: [3] C. Franchetti, M. Puri: Some characteristic properties of real Hilbert spaces.Rev. Roum. Math. Pures et Appl. 17 (1972), 1045-1048. MR 0318846
Reference: [4] T. D. Narang: On distance sets.Indian J. Pure and Applied Maths., 7 (1976), 1137-1141. Zbl 0423.54019, MR 0545969
Reference: [5] T. D. Narang: Best Approximation and Strict Convexity of Metric Spaces.Arch. Math. 27 (1981), 87-90. Zbl 0481.41031, MR 0673250
Reference: [6] D. V. Pai, P. Veermani: Applications of fixed point theorems to problems in optimization and best approximation.Nonlinear Analysis and Applications, Marcel Dekker, Inc., New York, Edited by S. P. Singh and J. H. Burry (1982), 393-400. MR 0689575
Reference: [7] Ivan Singer: Best approximation in normed linear spaces by elements of linear subspaces.Springer-Verlag, 1970. MR 0270044
.

Files

Files Size Format View
ArchMath_021-1985-4_7.pdf 464.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo