Title:
|
Aspects of the inverse problem to the calculus of variations (English) |
Author:
|
Anderson, Ian M. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
24 |
Issue:
|
4 |
Year:
|
1988 |
Pages:
|
181-202 |
. |
Category:
|
math |
. |
MSC:
|
58E30 |
idZBL:
|
Zbl 0674.58017 |
idMR:
|
MR983236 |
. |
Date available:
|
2008-06-06T06:19:14Z |
Last updated:
|
2012-05-09 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107326 |
. |
Reference:
|
[1] S. J. Aldersley, G. W. Horndeski: Conformally invariant tensorial concomitants of a pseudo-Riemannian metric.Utilitas Math. 17 (1980), 197-223. Zbl 0441.53011, MR 0583141 |
Reference:
|
[2] I. M. Anderson: On the structure of divergence-free tensors.J. Math. Phys. 19 (1978), 2570-2575. Zbl 0429.53048, MR 0512978 |
Reference:
|
[3] I. M. Anderson: Tensorial Euler-Lagrange expressions and conservation laws.Aequationes Math. 17 (1978), 255-291. Zbl 0418.49041, MR 0493675 |
Reference:
|
[4] I. M. Anderson: Natural variational principles on Riemannian manifolds.Annals of Math. 120 (1984), 329-370. Zbl 0565.58019, MR 0763910 |
Reference:
|
[5] I. M. Anderson: The variational bicomplex.(to appear). Zbl 0881.35069 |
Reference:
|
[6] I. M. Anderson: The minimal order solution to the inverse problem.(to appear). |
Reference:
|
[7] I. M. Anderson: Natural differential operators on the variational bicomplex.(to appear). |
Reference:
|
[8] I. M. Anderson, T. Duchamp: On the existence of global variational principles.Amer. J. Math. 102 (1980), 781-868. Zbl 0454.58021, MR 0590637 |
Reference:
|
[9] I. M. Anderson, T. Duchamp: Variational principles for second order quasi-linear scalar equations.J. Diff. Eqs. 51 (1984), 1-47. Zbl 0533.49010, MR 0727029 |
Reference:
|
[10] D. E. Betounes: Extensions of the classical Cartan form.Phys. Rev. D 29 (1984), 599-606. MR 0734285 |
Reference:
|
[11] K. S. Cheng, W. T. Ni: Conditions for the local existence of metric in a generic affine manifold.Math. Proc. Camb. Phil. Soc. 87 (1980), 527-534. Zbl 0442.53020, MR 0556932 |
Reference:
|
[12] S. S. Chern, J. Simons: Characteristic forms and geometric invariants.Annals of Math. 99 (1974), 48-69. Zbl 0283.53036, MR 0353327 |
Reference:
|
[13] M. Crampin: Alternative Lagrangians in particle dynamics.(to appear). Zbl 0666.58022, MR 0923340 |
Reference:
|
[14] V. V. Dodonov V. I. Man'ko, V. D. Skarzhinsky: The inverse problem of the variational calculus and the nonuniqueness of the quantization of classical systems.Hadronic J. 4 (1981), 1734-1803. MR 0632443 |
Reference:
|
[15] V. V. Dodonov V. I. Man'ko, V. D. Skarzhinsky: Classically equivalent Hamiltonians and ambiguities of quantization: a particle in a magnetic field.Il Nuovo Cimento 69B (1982), 185-205. MR 0669159 |
Reference:
|
[16] J. Douglas: Solution to the inverse problem of the calculus of variations.Trans. Amer. Math. Soc. 50 (1941), 71-128. MR 0004740 |
Reference:
|
[17] M. Ferraris: Fibered connections and Global Poincaré-Cartan forms in higher-order Calculus of Variations.in "Proc. of the Conference on Differential Geometry and its Applications, Nové Město na Moravě, Vol. II. Applications", Univerzita Karlova, Praga, 1984, pp. 61-91. Zbl 0564.53013, MR 0793200 |
Reference:
|
[18] V. N. Gusyatnikova A. M. Vinogradov V. A. Yumaguzhin: Secondary differential operators.J. Geom. Phys. 2 (1985), 23-65. MR 0845467 |
Reference:
|
[19] M. Henneaux: Equations of motions, commutation relations and ambiguities in the Lagrangian formalism.Ann. Phys. 140 (1982), 45-64. MR 0660925 |
Reference:
|
[20] M. Henneaux, L. C. Shepley: Lagrangians for spherically symmetric potentials.J. Math. Phys. 23 (1982), 2101-2104. Zbl 0507.70022, MR 0680007 |
Reference:
|
[21] M. Henneaux: On the inverse problem of the calculus of variations in field theory.J. Phys. A: Math. Gen. 17 (1984), 75-85. Zbl 0557.70019, MR 0734109 |
Reference:
|
[22] S. Hojman, H. Harleston: Equivalent Lagrangians: Multidimensional case.J. Math. Physics 22 (1981), 1414-1419. Zbl 0522.70024, MR 0626131 |
Reference:
|
[23] G. W. Horndeski: Differential operators associated with the Euler-Lagrange operator.Tensor 28 (1974), 303-318. Zbl 0289.49045, MR 0356143 |
Reference:
|
[24] J. Klein: Geometry of sprays. Lagrangian case. Principle of least curvature..in "Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Vol. 1", (Benenti, Francavigilia, Lichnerowicz, eds.), Atti dela Accademia delle Scienze di Torino, 1983, pp. 177-196. Zbl 0566.58012, MR 0773487 |
Reference:
|
[25] I. Kolář: A geometrical version of the higher order Hamilton formalism in fibered manifolds.J. Geom. Phys. 1 (1984), 127-137. MR 0794983 |
Reference:
|
[26] L. Littlejohn: On the classification of differential equations having orthogonal polynomial solutions.Annali di Mathematica pure ed applicata 138 (1984), 35-53. Zbl 0571.34003, MR 0779537 |
Reference:
|
[27] D. Lovelock: The Einstein tensor and its generalizations.J. Math. Physics 12 (1971), 498-501. Zbl 0213.48801, MR 0275835 |
Reference:
|
[28] J. M. Masqué: Poincaré-Cartan forms in higher order variational calculus on fibred manifolds.Revista Matematica Iberoamericana 1 (1985), 85-126. MR 0850411 |
Reference:
|
[29] P. J. Olver: Applications of Lie Groups to Differential Equations.Springer-Verlag, New York, 1986. Zbl 0588.22001, MR 0836734 |
Reference:
|
[30] P. J. Olver: Darboux's theorem for Hamiltonian differential operators.(to appear). |
Reference:
|
[31] H. Rund: A Cartan form for the field theory of Carathéodory in the calculus of variations.in "Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations, and Their Applications", G. M. Rassias and T. M. Rassias (eds), Marcel Dekker, New York, 1985, pp. 455-470. Zbl 0578.49025, MR 0822534 |
Reference:
|
[32] W. Sarlet: Symmetries and alternative Lagrangians in higher-order mechanics.Phys. Lett. A 108 (1985), 14-18. MR 0786789 |
Reference:
|
[33] W. Sarlet F. Cantrijin, M. Crampin: A new look at second-order equations and Lagrangian mechanics.J. Phys. A: Math. Gen. 17 (1984), 1999-2009. MR 0763792 |
Reference:
|
[34] F. Takens: Symmetries, conservation laws and variational principles.in "Lecture Notes in Mathematics No. 597", Springer-Verlag, New York, 1977, pp. 581-603. Zbl 0368.49019, MR 0650304 |
Reference:
|
[35] F. Takens: A global version of the inverse problem to the calculus of variations.J. Diff. Geom. 14 (1979), 543-562. MR 0600611 |
Reference:
|
[36] G. Thompson: Second order equation fields and the inverse problem of Lagrangian dynamics.(to appear). Zbl 0638.70013, MR 0917639 |
Reference:
|
[37] E. Tonti: Inverse problem: Its general solution.in "Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations and Their Applications", Marcel Decker, New York, 1985, pp. 497-510. Zbl 0583.49010, MR 0822537 |
Reference:
|
[38] T. Tsujishita: On variation bicomplexes associated to differential equations.Osaka J. Math. 19 (1982), 311-363. Zbl 0524.58041, MR 0667492 |
Reference:
|
[39] W. M. Tulczyjew: The Euler-Lagrange resolution.in "Lecture Notes in Mathematics No. 836," Springer-Verlag, New York, 1980, pp. 22-48. Zbl 0456.58012, MR 0607685 |
Reference:
|
[40] A. M. Vinogradov: On the algebra-geometric foundation of Lagrangian field theory.Sov. Math. Dokl. 18 (1977), 1200-1204. |
Reference:
|
[41] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism and conservation laws I, II.J. Math. Anal. Appl. 100 (1984), 1-129. MR 0739952 |
Reference:
|
[42] E. Witten: Global aspects of current algebra.Nucl. Phys. B223 (1983), 422-432. MR 0717915 |
. |