Previous |  Up |  Next

Article

Title: A formal series solution of the one-dimensional Schrödinger equation (English)
Author: Schimming, Rainer
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 27
Issue: 1
Year: 1991
Pages: 85-93
.
Category: math
.
MSC: 34A05
MSC: 34A25
MSC: 34A45
MSC: 34E05
MSC: 34L40
idZBL: Zbl 0756.34009
idMR: MR1189645
.
Date available: 2008-06-06T06:22:54Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107407
.
Reference: [1] M. Adleг, J. Moser: On a Class of Polynomials Connected with the Korteweg-de Vries Equation.Commun. math. Phys. 61 (1978), 1-30. MR 0501106
Reference: [2] J. L. Burchnall, T. W. Chaundy: A set of differential equations which can be solved by polynomials.Proc. London Math. Soc. 30 (1929-30), 401-414.
Reference: [3] J. Hadamard: Lectures on Cauchy's Problem.Yale University Press, New Haven, 1923.
Reference: [4] J. E. Lagnese: A New Differential Operator of the Pure Wave Type.J. Diff. Equ. 1 (1965), 171-187. Zbl 0134.31102, MR 0206504
Reference: [5] J. E. Lagnese: The Structure of a Class of Huygens' Operators.J. Math. Mech. 18 (1969), 1195-1201. Zbl 0185.18602, MR 0243204
Reference: [6] R. Schimming: Korteweg-de Vries-Hierarchie und Huygenssches Prinzip.Dresdener Seminar zuг Theoretischen Physik Nr. 26, 1986.
Reference: [7] R. Schimming: An explicit expression for the Korteweg-de Vries hierarchy.Zeitschrift f. Аnalysis u. ihre Аnw. 7 (1988), 203-214. Zbl 0659.35089, MR 0951118
.

Files

Files Size Format View
ArchMath_027-1991-1_11.pdf 825.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo