Previous |  Up |  Next

Article

Title: Principal solutions and transformations of linear Hamiltonian systems (English)
Author: Došlý, Ondřej
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 28
Issue: 1
Year: 1992
Pages: 113-120
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions are given which guarantee that the linear transformation converting a given linear Hamiltonian system into another system of the same form transforms principal (antiprincipal) solutions into principal (antiprincipal) solutions. (English)
Keyword: principal solution
Keyword: linear Hamiltonian system
Keyword: reciprocal system
MSC: 34A25
MSC: 34C10
MSC: 34C20
idZBL: Zbl 0805.34007
idMR: MR1201872
.
Date available: 2008-06-06T21:05:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107442
.
Reference: [1] Ahlbrandt C.D.: Principal and antiprincipal solutions of selfadjoint diferential systems and their reciprocals.Rocky Mountain J. Math. 2 (1972), 169-189. MR 0296388
Reference: [2] Ahlbrandt C.D.: Equivalent boundary value problems for self-adjoint differential systems.J. Diff Equations 9 (1971), 420-435. Zbl 0218.34020, MR 0284636
Reference: [3] Ahlbrandt C.D., Hinton D.B., Lewis R.T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory.J. Math. Anal. Appl. 81 (1981), 234-277. MR 0618771
Reference: [4] Coppel W.A.: Disconjugacy.Lecture Notes in Math. No. 220 (1971), Berlin – New York – Heidelberg. Zbl 0224.34003, MR 0460785
Reference: [5] Došlý O.: On transformation of self-adjoint linear differential systems and their reciprocals.Annal. Pol. Math. 50 (1990), 223-234.
Reference: [6] Došlý O.: Transformations of linear Hamiltonian system preserving oscillatory behaviour.Arch. Math. 27 (1991), 211-219. MR 1189218
Reference: [7] Hartman P.: Self-adjoint, non-oscillatory systems of ordinary, second order linear differential equations.Duke J. Math. 24 (1956), 25-35. MR 0082591
Reference: [8] Rasmussen C.H.: Oscillation and asymptotic behaviour of systems of ordinary linear differential equations.Trans. Amer. Math. Soc. 256 (1979), 1-49. MR 0546906
Reference: [9] Reid W.T.: Sturmian Theory for Ordinary Differential Equations.Springer Verlag, New York – Berlin – Heidelberg, 1980. Zbl 0459.34001, MR 0606199
.

Files

Files Size Format View
ArchMathRetro_028-1992-1_14.pdf 235.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo