Title:
|
Principal solutions and transformations of linear Hamiltonian systems (English) |
Author:
|
Došlý, Ondřej |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
28 |
Issue:
|
1 |
Year:
|
1992 |
Pages:
|
113-120 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Sufficient conditions are given which guarantee that the linear transformation converting a given linear Hamiltonian system into another system of the same form transforms principal (antiprincipal) solutions into principal (antiprincipal) solutions. (English) |
Keyword:
|
principal solution |
Keyword:
|
linear Hamiltonian system |
Keyword:
|
reciprocal system |
MSC:
|
34A25 |
MSC:
|
34C10 |
MSC:
|
34C20 |
idZBL:
|
Zbl 0805.34007 |
idMR:
|
MR1201872 |
. |
Date available:
|
2008-06-06T21:05:06Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107442 |
. |
Reference:
|
[1] Ahlbrandt C.D.: Principal and antiprincipal solutions of selfadjoint diferential systems and their reciprocals.Rocky Mountain J. Math. 2 (1972), 169-189. MR 0296388 |
Reference:
|
[2] Ahlbrandt C.D.: Equivalent boundary value problems for self-adjoint differential systems.J. Diff Equations 9 (1971), 420-435. Zbl 0218.34020, MR 0284636 |
Reference:
|
[3] Ahlbrandt C.D., Hinton D.B., Lewis R.T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory.J. Math. Anal. Appl. 81 (1981), 234-277. MR 0618771 |
Reference:
|
[4] Coppel W.A.: Disconjugacy.Lecture Notes in Math. No. 220 (1971), Berlin – New York – Heidelberg. Zbl 0224.34003, MR 0460785 |
Reference:
|
[5] Došlý O.: On transformation of self-adjoint linear differential systems and their reciprocals.Annal. Pol. Math. 50 (1990), 223-234. |
Reference:
|
[6] Došlý O.: Transformations of linear Hamiltonian system preserving oscillatory behaviour.Arch. Math. 27 (1991), 211-219. MR 1189218 |
Reference:
|
[7] Hartman P.: Self-adjoint, non-oscillatory systems of ordinary, second order linear differential equations.Duke J. Math. 24 (1956), 25-35. MR 0082591 |
Reference:
|
[8] Rasmussen C.H.: Oscillation and asymptotic behaviour of systems of ordinary linear differential equations.Trans. Amer. Math. Soc. 256 (1979), 1-49. MR 0546906 |
Reference:
|
[9] Reid W.T.: Sturmian Theory for Ordinary Differential Equations.Springer Verlag, New York – Berlin – Heidelberg, 1980. Zbl 0459.34001, MR 0606199 |
. |