Previous |  Up |  Next

Article

Title: The structure tensor and first order natural differential operators (English)
Author: Kobak, Piotr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 28
Issue: 2
Year: 1992
Pages: 121-138
Summary lang: English
.
Category: math
.
Summary: The notion of a structure tensor of section of first order natural bundles with homogeneous standard fibre is introduced. Properties of the structure tensor operator are studied. The universal factorization property of the structure tensor operator is proved and used for classification of first order $*$-natural differential operators $\underline{D}:\underline{T\times T} \rightarrow \underline{T}$ for $n\ge 3$. (English)
Keyword: natural bundle
Keyword: natural affine
Keyword: vector bundle
Keyword: natural differential operator
Keyword: G-structure
Keyword: structure tensor
MSC: 53A55
MSC: 53C10
MSC: 58A20
idZBL: Zbl 0785.53014
idMR: MR1222280
.
Date available: 2008-06-06T21:05:09Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107444
.
Reference: [1] Bernard, D.: Sur la gèometrie differèntiele des $G$-structures.Ann. Inst. Fourier 10 (1960). MR 0126800
Reference: [2] Epstein, D.B.A.: Natural tensors on Riemannian manifolds.J. Diff. Geom. 10 (1975), 631 -645. Zbl 0321.53039, MR 0415531
Reference: [3] Fujimoto, A.: Theory of $G$-structures.Publications of the Study Group of Geometry 1 (1972), Okayama. Zbl 0235.53035, MR 0348664
Reference: [4] Gancarzewicz, J.: Liftings of functions and vector fields to natural bundles.Diss. Math. CCXII (1983), Institute of Mathematics, Warszawa. MR 0697471
Reference: [5] Kolář, I., Michor, P.: All natural concomitants of vector valued differential forms.Proc. of the Winter School of Geometry and Physics (1987), Srní. MR 0946715
Reference: [6] Krupka, D.: Natural Lagrangian structures.Diff. Geom. 12 (1984), Banach center Publications, PWN - Polish Scientific Publisher, Warszaw, 185-210. Zbl 0572.58007, MR 0961080
Reference: [7] Krupka, D., Mikolášová, V.: On the uniqueness of some differential invariants: $d,[,], \triangledown $.Cz. Math. J. 34(109) (1984), 588-597. MR 0764440
Reference: [8] Konderak, J.: Fibre bundles associated with fields of geometric objects and a structure tensor.preprint, International Centre For Theoretical Physics, Miramare, Trieste, 1987.
Reference: [9] Łubczonok, G.: On the reduction Theorems.Ann. Polon. Math. XXVI (1972), 125-133. MR 0307078
Reference: [10] Pommaret, J.F.: Systems of partial differential equations and Lie pseudogroups.Gordon and Breach, 1978. Zbl 0418.35028, MR 0517402
Reference: [11] Terng, G.L.: Natural vector bundle and natural differential operators.Am. J. Math. 100 (1978), 775-828. MR 0509074
Reference: [12] Zajtz, A.: Foundations of differential geometry of natural bundles.Univ. of Caracas, 1984.
.

Files

Files Size Format View
ArchMathRetro_028-1992-2_1.pdf 332.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo