Previous |  Up |  Next

Article

Title: Explicit form for the discrete logarithm over the field ${\rm GF}(p,k)$ (English)
Author: Meletiou, Gerasimos C.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 29
Issue: 1
Year: 1993
Pages: 25-28
Summary lang: English
.
Category: math
.
Summary: For $a$ generator of the multiplicative group of the field $GF(p,k)$, the discrete logarithm of an element $b$ of the field to the base $a$, $b\ne 0$ is that integer $z:1\le z \le p^k -1$, $b=a^z$. The $p$-ary digits which represent $z$ can be described with extremely simple polynomial forms. (English)
Keyword: discrete logarithm
Keyword: finite fields
Keyword: cryptography
MSC: 11T71
MSC: 11T99
MSC: 94A60
idZBL: Zbl 0818.11049
idMR: MR1242625
.
Date available: 2008-06-06T21:23:38Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107463
.
Reference: [1] Adleman, L. M.: A subexponential algorithm for the discrete logarithm problem, with applications to cryptography.Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), 55-60.
Reference: [2] Diffie, W., Hellman, M. E.: New directions in cryptography.IEEE Trans. Inform. Theory, IT-22 (1976), 644-654. MR 0437208
Reference: [3] Odlyzko, A. M.: Discrete logarithms in finite fields and their cryptographic significance.Proc. of the Eurocrypt ’84. Zbl 0594.94016
Reference: [4] Pohling, S. C., Hellman, M. E.: An improved algorithm for computing logarithms over $GF(p)$ and its cryptographic significance.IEEE Trans. Inform. Theory, IT-24 (1978), 106-110. MR 0484737
Reference: [5] Pollard, S. M.: The fast Fourier transform in a finite field.Mathematics of computation 25 (1971), 365-374. Zbl 0221.12015, MR 0301966
Reference: [6] Wells, A. L.: A polynomial form for logarithms modulo a prime.IEEE Trans.Inform. Theory, IT-30 (1984), 845-846. Zbl 0558.12009
Reference: [7] Knuth, D. E.: The art of computer programming.Reading MA III (1969), Addison Wesley. Zbl 0191.18001, MR 0378456
.

Files

Files Size Format View
ArchMathRetro_029-1993-1_5.pdf 193.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo