Previous |  Up |  Next


category over manifolds; tangent valued form; Frölicher-Nijenhuis bracket; special connections
We define the tangent valued $C$-forms for a large class of differential geometric categories. We deduce that the Frölicher-Nijenhuis bracket of two tangent valued $C$-forms is a $C$-form as well. Then we discuss several concrete cases and we outline the relations to the theory of special connections.
[1] Cabras, A., Canarutto, D.: Systems of Principal Tangent-valued forms. Rendiconti di Mat., Ser VII, Roma 11 (1991), 471-493. MR 1136517
[2] Cabras, A., Canarutto, D.: The System of Principal Connections. Rendiconti di Mat., Ser VII, Roma 11 (1991), 849-871. MR 1151603
[3] Cabras, A., Canarutto, D., Kolář, I., Modugno, M.: Structured Bundles. Pitagora Editrice, Bologna (1991).
[4] Crampin, M., Ibort, L. A.: Graded Lie algebra of derivations and Ehresmann connections. J. Math. Pures Appl. 66 (1987), 113-125. MR 0884816
[5] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms I. Indag. Math. 18 (1956), 338-385.
[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer - Verlag, 1993. MR 1202431
[7] Kolář, I., Modugno, M.: On the algebraic structure of the bundles of higher velocities. Seminari Instituto di Mat. Appl. “G. Sansone”, Florence (1989), 17 pp.
[8] Kolář, I., Modugno, M.: On the algebraic structure on the jet prolongations of fibred manifolds. Czechoslovak Math. J. 40 (1990), 601-611. MR 1084896
[9] Michor, P. W.: Remarks on the Frölicher-Nijenhuis bracket. Diff. Geom. and Its Applications, Proc. Conf. J.E. Purkyně University, Brno (1987), 197-220. MR 0923350 | Zbl 0633.53024
[10] Modugno, M.: Systems of vector valued forms on a fibred manifold and applications to gauge theories. Proc. Conf. Diff. Geom. Math. in Math. Phys., Salamanca 1985, Lect. Not. Math. 1251, Springer, 1987, 238-264. MR 0897122 | Zbl 0614.53072
Partner of
EuDML logo