Previous |  Up |  Next


Title: Symmetries of connections on fibered manifolds (English)
Author: Vondra, Alexandr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 2
Year: 1994
Pages: 97-115
Summary lang: English
Category: math
Summary: The (infinitesimal) symmetries of first and second-order partial differential equations represented by connections on fibered manifolds are studied within the framework of certain “strong horizontal“ structures closely related to the equations in question. The classification and global description of the symmetries is presented by means of some natural compatible structures, eġḃy vertical prolongations of connections. (English)
Keyword: connections
Keyword: differential equations
Keyword: integral sections
Keyword: symmetries
MSC: 35A25
MSC: 35A30
MSC: 53C05
MSC: 58A30
MSC: 58J70
idZBL: Zbl 0813.35006
idMR: MR1292562
Date available: 2008-06-06T21:25:55Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Alekseevskiĭ, D. V., Vinogradov, A. M. and Lychagin, V. V.: Fundamental ideas and concepts of differential geometry.Itogi nauki i tekhniki, Sovremennye problemy matematiki 28, “VINITI", Moscow, 1988. (Russian) MR 1315326
Reference: [2] Bliznikas, V. I. and Vosylius, R. V.: Non-holonomic connections.Liet. matem. rink. 27(1) (1987), 15–27. (Russian) MR 0895955
Reference: [3] de León, M. and Rodrigues, P. R.: Methods of Differential Geometry in Analytical Mechanics.North-Holland Mathematics Studies 158, North-Holland, Amsterdam, 1989. MR 1021489
Reference: [4] de León, M. and Marrero, J. C.: Time-dependent linear Lagrangians: the inverse problem, symmetries and constants of motion.preprint, 1992.
Reference: [5] Doupovec, M. and Vondra, A.: On certain natural transformations between connections.Proc. Conf. Diff. Geom. and Its Appl., Opava 1992, Silesian Univ., Opava, 1992, pp. 273–279. MR 1255548
Reference: [6] Duzhin, S. V. and Lychagin, V. V.: Symmetries of Distributions and Quadrature of Ordinary Differential Equations.preprint, 1991. MR 1128153
Reference: [7] Kolář, I.: Some natural operations with connections.J. Nat. Acad. Math. 5 (1987), 127–141. MR 0994555
Reference: [8] Kolář, I.: Connections in 2-fibered manifolds.Arch. Math. (Brno) 17 (1981), 23–30. MR 0672485
Reference: [9] Kolář, I., Michor, P. W. and Slovák, J.: Natural Operations in Differential Geometry.Springer, 1993. MR 1202431
Reference: [10] Kolář, I. and Slovák, J.: Prolongations of vector fields to jet bundles.In Proc. of the Winter School on Geometry and Physics, Srní, 1989, Suppl. Rendiconti Circolo Mat. Palermo, Serie II 21, 1989, pp. 103–111.
Reference: [11] Krupka, D.: Some geometrical aspects of variational problems on fibered manifolds.Folia Fac. Sci. Nat. Univ. Purk. Brun. Phys. XIV (1973), 1–65.
Reference: [12] Krupka, D. and Janyška, J.: Lectures on differential invariants.Folia Fac. Sci. Nat. Univ. Purk. Brun. Phys., J. E. Purkyně University, Brno, 1990. MR 1108622
Reference: [13] Krupková, O.: Hamilton-Jacobi distributions.preprint, 1989.
Reference: [14] Krupková, O.: Variational analysis on fibered manifolds over one-dimensional bases.Ph.D. Thesis, Dept. of Mathematics, Silesian Univ. at Opava, Czechoslovakia, 1992.
Reference: [15] Krupková, O. and Vondra, A.: On some integration methods for connections on fibered manifolds.Proc. Conf. Diff. Geom. and Its Appl., Opava 1992, Silesian Univ., Opava, 1992, pp. 89–101. MR 1255531
Reference: [16] Mangiarotti, L., Modugno, M.: Fibred spaces, Jet spaces and Connections for Field Theories.In Proceedings of International Meeting “Geometry and Physics", Florence, 1982, Pitagora Editrice, Bologna, 1983, pp. 135–165. MR 0760841
Reference: [17] Mangiarotti, L., Modugno, M.: Connections and differential calculus on fibred manifolds. Applications to field theory.Istituto di Matematica Applicata “G.Sansone", Firense (to appear).
Reference: [18] Modugno, M.: Jet involution and prolongation of connections.Časopis Pěst. Mat. 114(4) (1989), 356–365. MR 1027231
Reference: [19] Olver, P. J.: Applications of Lie groups to differential equations.Translation to Russian, “Mir", Moscow, 1989, Springer-Verlag, 1986. Zbl 0588.22001, MR 0836734
Reference: [20] Prince, G. E.: Toward a classification of dynamical symmetries in classical mechanics.Bull. Austral. Math. Soc. 27 (1983), 53–71. Zbl 0495.58014, MR 0696644
Reference: [21] Prince, G. E.: A complete classification of dynamical symmetries in classical mechanics.Bull. Austral. Math. Soc. 32 (1985), 299–308. Zbl 0578.58018, MR 0815371
Reference: [22] Sarlet, W.: Adjoint symmetries of second-order differential equations and generalizations.In Proc. Conf. Diff. Geom. and Its Appl., Brno, 1989, World Scientific, Singapore, 1990, pp. 412–421. Zbl 0787.58018, MR 1062048
Reference: [23] Sarlet, W., Martínez, E. and Vandecasteele, A.: Calculus of forms along a map adapted to the study of second-order differential equations.preprint, 1992. MR 1255533
Reference: [24] Saunders, D. J.: The Geometry of Jet Bundles.London Mathematical Society Lecture Note Series 142, Cambridge University Press, Cambridge, 1989. Zbl 0665.58002, MR 0989588
Reference: [25] Vinogradov, A. M., Krasil$^{\prime }$shchik, I. S. and Lychagin, V. V.: An introduction to the geometry of nonlinear differential equations.“Nauka", Moscow, 1986. (Russian) MR 0855844
Reference: [26] Vondra, A.: On some connections related to the geometry of regular higher–order dynamics.(to appear).
Reference: [27] Vondra, A.: Sprays and homogeneous connections on $R\times TM$.Arch. Math. (Brno) 28 (1992), 163–173. Zbl 0790.53028, MR 1222283
Reference: [28] Vosylius, R. V.: The contravariant theory of the differential prolongation on a space with a connection.Itogi nauki i tekhniki, Problemy geometrii (14), “VINITI", Moscow, 1983, pp. 101–176. (Russian) MR 0697391
Reference: [29] Vosylius, R. V.: The 1-integrability of non-holonomic differential geometrical structures. 1. $\Gamma _{1,2}$ - connections.Liet. matem. rink. 27(1) (1987), 28–37. (Russian)


Files Size Format View
ArchMathRetro_030-1994-2_3.pdf 333.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo