Title:
|
On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$ (English) |
Author:
|
Jakubec, Stanislav |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
30 |
Issue:
|
4 |
Year:
|
1994 |
Pages:
|
263-270 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$. (English) |
MSC:
|
11B68 |
MSC:
|
11R18 |
MSC:
|
11R20 |
MSC:
|
11R29 |
idZBL:
|
Zbl 0818.11042 |
idMR:
|
MR1322570 |
. |
Date available:
|
2008-06-06T21:27:00Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107512 |
. |
Reference:
|
[1] Buhler, J. P., Crandall, R. E. and Sompolski, R. W.: Irregular primes to one million.Math. Comp. 59 (1992), no. 200, 717-722. MR 1134717 |
Reference:
|
[2] Darmon, H.: Note on a polynomial of Emma Lehmer.Math. Comp. 56 (1991), no. 44, 795-800. Zbl 0732.11056, MR 1068821 |
Reference:
|
[3] Gras, M. N.: Sur les corps cubiques cycliques dont l’anneau des entiers est monogene.Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. Zbl 0287.12010, MR 0352043 |
Reference:
|
[4] Gras, M. N.: Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de $Q$.Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. MR 0526779 |
Reference:
|
[5] Gras, M. N.: Familles d’unites dans les extensions cycliques reelles de degre 6 de $Q$.Publ. Math. Besancon (1984/1985-1985/1986). MR 0898667 |
Reference:
|
[6] Gras, M. N.: Special units in real cyclic sextic fields.Math.Comp. 48 (1987), 341-355. Zbl 0617.12006, MR 0866107 |
Reference:
|
[7] Jakubec, S.: The congruence for Gauss’s period.Journal of Number Theory 48 (1994), 36-45. MR 1284872 |
Reference:
|
[8] Jakubec, S.: On the Vandiver’s conjecture.Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. MR 1292720 |
Reference:
|
[9] Lazarus, A. J.: Gaussian periods and units in certain cyclic fields.Proceedings of AMS 115, 961 - 968. Zbl 0760.11032, MR 1093600 |
Reference:
|
[10] Lecxacheux, O.: Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire $X_1(13)$.J. Number Theory 31 (1989), 54-63. MR 0978099 |
Reference:
|
[11] Lehmer, E.: Connection between Gaussian periods and cyclic units.Math. Comp. 50 (1988), 535-541. Zbl 0652.12004, MR 0929551 |
Reference:
|
[12] Metsankyla, T.: A class number congruence for cyclotomic fields and their subfields.Acta Arith. 23 (1973), 107-116. MR 0332720 |
Reference:
|
[13] Moser, C.: Nombre de classes d’une extension cyclique reelle de $\mathbb{Q}$, de degre 4 ou 6 et de conducteur premier.Math. Nachr. 102 (1981), 45-52. MR 0642140 |
Reference:
|
[14] Moser, C., Payan, J. J.: Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier.J.Math. Soc. Japan 33 (1981), 701-706. MR 0630633 |
Reference:
|
[15] Schoof, R., Washington, L. C.: Quintic polynomials and real cyclotomic fields with large class numbers.Math. Comp. 50 (1988), 543-556. MR 0929552 |
Reference:
|
[16] Shanks, D.: The simplest cubic fields.Math. Comp. 28 (1974), 1137-1152. Zbl 0307.12005, MR 0352049 |
Reference:
|
[17] Shen, Y. Y.: Unit groups and class numbers of real cyclic fields.TAMS 326 (1991), 179-209. MR 1031243 |
Reference:
|
[18] Washington, L. C.: Introduction to Cyclotomic Fields.Springer-Verlag 83. Zbl 0966.11047, MR 1421575 |
. |