Previous |  Up |  Next

Article

Title: Parametrized relaxation for evolution inclusions of the subdifferential type (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 1
Year: 1995
Pages: 9-28
Summary lang: English
.
Category: math
.
Summary: In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdifferentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the “Filippov-Gronwall” inequality and using it, we prove the parametric relaxation theorem. An example of a parabolic distributed parameter system is also worked out in detail. (English)
Keyword: subdifferential
Keyword: relaxation theorem
Keyword: Filippov-Gronwall inequality
Keyword: lower semicontinuous multifunction
Keyword: continuous selector
Keyword: weak norm
MSC: 34A60
MSC: 34G20
MSC: 46N20
MSC: 49J52
MSC: 93C20
idZBL: Zbl 0839.34075
idMR: MR1342371
.
Date available: 2008-06-06T21:27:35Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107520
.
Reference: [1] Attouch, H.: Variational Convergence for Functionals and Operators.Pitman, London (1984). MR 0773850
Reference: [2] Aubin, J.-P., Cellina, A.: Differential Inclusions.Springer-Verlag, Berlin (1984). MR 0755330
Reference: [3] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands (1976). Zbl 0328.47035, MR 0390843
Reference: [4] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math.90, (1988), pp. 69-86. MR 0947921
Reference: [5] Brezis, H.: Operateurs Maximaux Monotones.North Holland, Amsterdam (1973). Zbl 0252.47055
Reference: [6] Colombo, G., Fryszkowski, A., Rzezuchowski, T., Staicu, V.: Continuous selections of solution sets of Lipschitzean differential inclusions.Funkcial. Ekvac. - in press.
Reference: [7] Cornet, B.: Existence of slow solutions for a class of differential inclusions.J. Math. Anal. Appl. 96, (1983), pp. 130-147. Zbl 0558.34011, MR 0717499
Reference: [8] DeBlasi, F., Myjak, J.: Continuous approximations for multifunctions.Pacific J. Math.123, (1986), pp. 9-31. MR 0834135
Reference: [9] Diestel, J., Uhl, J.J.: Vector Measures.Math Surveys,15, AMS, Providence, RI (1977). MR 0453964
Reference: [10] Filippov, A.F.: Classical solutions of differential equations with multivalued right-hand side.SIAM J. Control 5, (1967), pp. 609-621. MR 0220995
Reference: [11] Flytzanis, E., Papageorgiou, N.S.: On the existence of optimal controls for a class of nonlinear infinite dimensional systems.Math. Nachrichten 150, (1991), pp. 203-217. MR 1109656
Reference: [12] Frankowska, H.: A priori estimates for operational differential inclusions.J. Differential Equations 84, (1990), pp. 100-128. Zbl 0715.49010, MR 1042661
Reference: [13] Fryszkowski, A., Rzezuchowski, T.: Continuous version of Filippov-Wazewski relaxation theorem.J. Differential Equations, 94, (1991), pp. 254-265. MR 1137615
Reference: [14] Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions.J. Multivariate Anal.7, (1977), pp. 149-182. MR 0507504
Reference: [15] Himmelberg, C., Van Vleck, F.: Lipschitzean generalized differential equations.Rend. Sem. Mat. Padova, 48, (1972), pp. 159-169. MR 0340692
Reference: [16] Klein, E., Thompson, A.: Theory of Correspondences.Wiley Interscience, New York (1984). MR 0752692
Reference: [17] Moreau, J.-J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Equations, 26, (1977), pp. 347-374. Zbl 0351.34038, MR 0508661
Reference: [18] Papageorgiou, N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation.J. Multiv. Anal.17, (1985), pp. 185-207.
Reference: [19] Papageorgiou, N.S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32, (1987), pp. 437-464. Zbl 0634.28005, MR 0914749
Reference: [20] Papageorgiou, N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10, (1987), pp. 433-442. Zbl 0619.28009, MR 0896595
Reference: [21] Papageorgiou, N.S.: A relaxation theorem for differential inclusions in Banach spaces.Tohoku Math. Journ. 39, (1987), pp. 505-517. Zbl 0647.34011, MR 0917464
Reference: [22] Papageorgiou, N. S.: On the relation between relaxability and performance stability for optimal control problems governed by nonlinear evolution equations.Intern. Journ. of Systems Sci. 22, (1991), pp. 237-259. MR 1087659
Reference: [23] Papageorgiou, N.S.: On the solution set of evolution inclusions driven by time dependent subdifferentials.Math. Japonica 37, (1992), pp. 1-13. Zbl 0810.34059, MR 1196384
Reference: [24] Papageorgiou, N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials.Math. Nacrichten 158, (1992), pp. 22-36. Zbl 0776.34014, MR 1235307
Reference: [25] Papageorgiou, N.S.: Continuous dependence results for subdifferential inclusions.Zeitshrift für Analysis und ihre Anwendungen, 12 (1), (1993), pp. 137-152. Zbl 0777.34042, MR 1239434
Reference: [26] Papageorgiou, N.S.: Convexity of the orientor field and the solution set of a class of evolution inclusions.Math. Slovaca 42 (1993), pp. 593-615. Zbl 0799.34018, MR 1273713
Reference: [27] Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems.Lecture Notes in Math, 1459, Springer-Verlag, New York (1990). Zbl 0732.49002, MR 1090951
Reference: [28] Wagner, D.: Survey of measurable selection theorems.SIAM J. Control Optim. 15, (1977), pp. 859-903. Zbl 0427.28009, MR 0486391
Reference: [29] Watanabe, J.: On certain nonlinear evolution equations.J. Math. Soc. Japan 25, (1973), pp. 446-463. Zbl 0253.35053, MR 0326522
Reference: [30] Yamada, Y.: On evolution equations generated by subdifferential operators.J. Fac. Sci. Univ. Tokyo 23, (1976), pp. 491-515. Zbl 0343.34053, MR 0425701
Reference: [31] Yotsutani, S.: Evolution equations associated with subdifferentials.J. Math. Soc. Japan 31, (1978), pp. 623-646. MR 0544681
Reference: [32] Zhu, Q.-J.: On the solution set of differential inclusions in Banach spaces.J. Differential Equations 93, (1991), pp. 213-237. MR 1125218
.

Files

Files Size Format View
ArchMathRetro_031-1995-1_2.pdf 338.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo