Title:
|
Parametrized relaxation for evolution inclusions of the subdifferential type (English) |
Author:
|
Papageorgiou, Nikolaos S. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
31 |
Issue:
|
1 |
Year:
|
1995 |
Pages:
|
9-28 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdifferentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the “Filippov-Gronwall” inequality and using it, we prove the parametric relaxation theorem. An example of a parabolic distributed parameter system is also worked out in detail. (English) |
Keyword:
|
subdifferential |
Keyword:
|
relaxation theorem |
Keyword:
|
Filippov-Gronwall inequality |
Keyword:
|
lower semicontinuous multifunction |
Keyword:
|
continuous selector |
Keyword:
|
weak norm |
MSC:
|
34A60 |
MSC:
|
34G20 |
MSC:
|
46N20 |
MSC:
|
49J52 |
MSC:
|
93C20 |
idZBL:
|
Zbl 0839.34075 |
idMR:
|
MR1342371 |
. |
Date available:
|
2008-06-06T21:27:35Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107520 |
. |
Reference:
|
[1] Attouch, H.: Variational Convergence for Functionals and Operators.Pitman, London (1984). MR 0773850 |
Reference:
|
[2] Aubin, J.-P., Cellina, A.: Differential Inclusions.Springer-Verlag, Berlin (1984). MR 0755330 |
Reference:
|
[3] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands (1976). Zbl 0328.47035, MR 0390843 |
Reference:
|
[4] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math.90, (1988), pp. 69-86. MR 0947921 |
Reference:
|
[5] Brezis, H.: Operateurs Maximaux Monotones.North Holland, Amsterdam (1973). Zbl 0252.47055 |
Reference:
|
[6] Colombo, G., Fryszkowski, A., Rzezuchowski, T., Staicu, V.: Continuous selections of solution sets of Lipschitzean differential inclusions.Funkcial. Ekvac. - in press. |
Reference:
|
[7] Cornet, B.: Existence of slow solutions for a class of differential inclusions.J. Math. Anal. Appl. 96, (1983), pp. 130-147. Zbl 0558.34011, MR 0717499 |
Reference:
|
[8] DeBlasi, F., Myjak, J.: Continuous approximations for multifunctions.Pacific J. Math.123, (1986), pp. 9-31. MR 0834135 |
Reference:
|
[9] Diestel, J., Uhl, J.J.: Vector Measures.Math Surveys,15, AMS, Providence, RI (1977). MR 0453964 |
Reference:
|
[10] Filippov, A.F.: Classical solutions of differential equations with multivalued right-hand side.SIAM J. Control 5, (1967), pp. 609-621. MR 0220995 |
Reference:
|
[11] Flytzanis, E., Papageorgiou, N.S.: On the existence of optimal controls for a class of nonlinear infinite dimensional systems.Math. Nachrichten 150, (1991), pp. 203-217. MR 1109656 |
Reference:
|
[12] Frankowska, H.: A priori estimates for operational differential inclusions.J. Differential Equations 84, (1990), pp. 100-128. Zbl 0715.49010, MR 1042661 |
Reference:
|
[13] Fryszkowski, A., Rzezuchowski, T.: Continuous version of Filippov-Wazewski relaxation theorem.J. Differential Equations, 94, (1991), pp. 254-265. MR 1137615 |
Reference:
|
[14] Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions.J. Multivariate Anal.7, (1977), pp. 149-182. MR 0507504 |
Reference:
|
[15] Himmelberg, C., Van Vleck, F.: Lipschitzean generalized differential equations.Rend. Sem. Mat. Padova, 48, (1972), pp. 159-169. MR 0340692 |
Reference:
|
[16] Klein, E., Thompson, A.: Theory of Correspondences.Wiley Interscience, New York (1984). MR 0752692 |
Reference:
|
[17] Moreau, J.-J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Equations, 26, (1977), pp. 347-374. Zbl 0351.34038, MR 0508661 |
Reference:
|
[18] Papageorgiou, N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation.J. Multiv. Anal.17, (1985), pp. 185-207. |
Reference:
|
[19] Papageorgiou, N.S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32, (1987), pp. 437-464. Zbl 0634.28005, MR 0914749 |
Reference:
|
[20] Papageorgiou, N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10, (1987), pp. 433-442. Zbl 0619.28009, MR 0896595 |
Reference:
|
[21] Papageorgiou, N.S.: A relaxation theorem for differential inclusions in Banach spaces.Tohoku Math. Journ. 39, (1987), pp. 505-517. Zbl 0647.34011, MR 0917464 |
Reference:
|
[22] Papageorgiou, N. S.: On the relation between relaxability and performance stability for optimal control problems governed by nonlinear evolution equations.Intern. Journ. of Systems Sci. 22, (1991), pp. 237-259. MR 1087659 |
Reference:
|
[23] Papageorgiou, N.S.: On the solution set of evolution inclusions driven by time dependent subdifferentials.Math. Japonica 37, (1992), pp. 1-13. Zbl 0810.34059, MR 1196384 |
Reference:
|
[24] Papageorgiou, N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials.Math. Nacrichten 158, (1992), pp. 22-36. Zbl 0776.34014, MR 1235307 |
Reference:
|
[25] Papageorgiou, N.S.: Continuous dependence results for subdifferential inclusions.Zeitshrift für Analysis und ihre Anwendungen, 12 (1), (1993), pp. 137-152. Zbl 0777.34042, MR 1239434 |
Reference:
|
[26] Papageorgiou, N.S.: Convexity of the orientor field and the solution set of a class of evolution inclusions.Math. Slovaca 42 (1993), pp. 593-615. Zbl 0799.34018, MR 1273713 |
Reference:
|
[27] Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems.Lecture Notes in Math, 1459, Springer-Verlag, New York (1990). Zbl 0732.49002, MR 1090951 |
Reference:
|
[28] Wagner, D.: Survey of measurable selection theorems.SIAM J. Control Optim. 15, (1977), pp. 859-903. Zbl 0427.28009, MR 0486391 |
Reference:
|
[29] Watanabe, J.: On certain nonlinear evolution equations.J. Math. Soc. Japan 25, (1973), pp. 446-463. Zbl 0253.35053, MR 0326522 |
Reference:
|
[30] Yamada, Y.: On evolution equations generated by subdifferential operators.J. Fac. Sci. Univ. Tokyo 23, (1976), pp. 491-515. Zbl 0343.34053, MR 0425701 |
Reference:
|
[31] Yotsutani, S.: Evolution equations associated with subdifferentials.J. Math. Soc. Japan 31, (1978), pp. 623-646. MR 0544681 |
Reference:
|
[32] Zhu, Q.-J.: On the solution set of differential inclusions in Banach spaces.J. Differential Equations 93, (1991), pp. 213-237. MR 1125218 |
. |