Title:
|
Property (A) of the $n$-th order differential equations with deviating argument (English) |
Author:
|
Šoltés, Vincent |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
31 |
Issue:
|
1 |
Year:
|
1995 |
Pages:
|
59-63 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The equation to be considered is \[ L_ny(t)+p(t)y(\tau (t))=0. \] The aim of this paper is to derive sufficient conditions for property (A) of this equation. (English) |
Keyword:
|
property (A) |
Keyword:
|
degree of solution |
MSC:
|
34C10 |
MSC:
|
34K15 |
MSC:
|
34K25 |
idZBL:
|
Zbl 0830.34057 |
idMR:
|
MR1342376 |
. |
Date available:
|
2008-06-06T21:28:00Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107525 |
. |
Reference:
|
[1] Džurina, J.: Comparison theorems for nonlinear ODE’s..Math. Slovaca 42 (1992), 299–315. MR 1182960 |
Reference:
|
[2] Džurina, J.: Property (A) of third-order differential equations with deviating argument.Math. Slovaca 44 (1994). MR 1281030 |
Reference:
|
[3] Foster, K. E., Grimmer, R. C.: Nonoscillatory solutions of higher order differential equations.J. Math. Anal. Appl. 71 (1979), 1–17. MR 0545858 |
Reference:
|
[4] Kiguradze, I.: On the oscillation of solutions of the equation $d^mu/dt^m + a(t)|u|^n sign\,u = 0$.Mat. Sb 65 (1964), 172–187. (Russian) Zbl 0135.14302, MR 0173060 |
Reference:
|
[5] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments.J. Math. Soc. Japan 3 (1981), 509–532. MR 0620288 |
Reference:
|
[6] Naito, M.: On strong oscillation of retarded differential equations.Hiroshima Math. J. 11 (1981), 553–560. Zbl 0512.34056, MR 0635038 |
Reference:
|
[7] Šeda, V.: Nonoscillatory solutions of differential equations with deviating argument.Czech. Math. J. 36 (1986), 93–107. MR 0822871 |
Reference:
|
[8] Škerlík, A.: Oscillation theorems for third order nonlinear differential equations.Math. Slovaca 42 (1992), 471–484. MR 1195041 |
. |