Previous |  Up |  Next

Article

Title: Parallelisability conditions for differentiable three-webs (English)
Author: Vanžurová, Alena
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 1
Year: 1995
Pages: 75-84
Summary lang: English
.
Category: math
.
Summary: Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web. (English)
Keyword: distribution
Keyword: projector
Keyword: manifold
Keyword: three-web
Keyword: regular (parallelisable) web
MSC: 53A60
idZBL: Zbl 0835.53019
idMR: MR1342378
.
Date available: 2008-06-06T21:28:11Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107527
.
Reference: [1] Akivis, M. A.: Three-webs of multidimensional surfaces.Trudy geom. seminara 2 (1969), 7–31. (Russian) MR 0254760
Reference: [2] Akivis, M. A.: Local differentiable quasigroups and three-webs of multidimensional surfaces.Studies in the Theory of Quasigroups and Loops, Stiintsa, Kishinev, 1973, pp. 3 – 12. (Russian) MR 0370391
Reference: [3] Chern, S. S.: Eine Invariantentheorie der $3$-Gewebe aus $r$-dimensionalen Mannigfaltigkeiten in $R^{2n}$.Abhandl. Math. Sem. Hamburg Univ. 11 (1936), 333–358.
Reference: [4] Chern, S. S.: Web Geometry.Bull. Am. Math. Soc. 6 (1982), 1–8. Zbl 0483.53013, MR 0634430
Reference: [5] Čadek, M., Šim¨a, J.: Decomposition of smooth functions of two multicodimensional variables.Czech. Math. J. 41(116) (1991), Praha, 342–358. MR 1105450
Reference: [6] Goldberg, V. V.: Theory of multicodimensional $(n+1)$-webs.Kluwer Academic Publishers, Dordrecht (Boston, London), 1988. Zbl 0668.53001, MR 0998774
Reference: [7] Goldberg, V. V.: Local differentiable quasigroups and webs.In: O Chein, H.O. Pflugfelder, J.D.H. Smith (eds.) Quasigroups and Loops, 1990. Zbl 0737.53015, MR 1125816
Reference: [8] Kikkawa, M.: Canonical connections of homogeneous Lie loops and $3$-webs.Mem. Fac. Sci Shimane Univ 19 (1985), 37–55. Zbl 0588.53014, MR 0841222
Reference: [9] Kikkawa, M.: Projectivity of homogeneous left loops.“Nonassociative algebras and relative topics”, World Scientific, 1991, pp. 77–99. Zbl 0788.53042, MR 1150252
Reference: [10] Nagy, P. T.: On the canonical connection of a three-web.Publ. Math. Debrecen 32 (1985), 93-99. MR 0810595
Reference: [11] Nagy, P. T.: Invariant tensor fields and the canonical connection of a $3$-web.Aeq. Math. 35 (1988), University of Waterloo, Birkhäuser Verlag, Basel, 31-44.
Reference: [12] Šim¨a, J.: Some factorization of matrix functions in several variables.Arch. Math. 28 (1992), Brno, 85–94. MR 1201870
Reference: [13] Vanžura, J.: Integrability conditions for polynomial structures.Kōdai Math. Sem. Rep. 27 (1976), 42–50. MR 0400106
Reference: [14] Vanžura, J.: Simultaneous integrability of an almost tangent structure and a distribution.Demonstratio Mathematica XIX No 1 (1986), 359–370. MR 0895009
Reference: [15] Vanžurová, A.: On $(3,2,n)$-webs.Acta Sci. Math. 59 No 3-4, Szeged. Zbl 0828.53017, MR 1317181
Reference: [16] Vanžurová, A.: On three-web manifolds.Report of the Czech Meeting 1993 on Incidence Structures, PU Olomouc, pp. 56–66.
Reference: [17] Vanžurová, A.: On torsion of a three-web.( to appear).
Reference: [18] Walker, G. A.: Almost-product structures.Differential geometry, Proc. of Symp. in Pure Math. vol. III, pp. 94-100. Zbl 0103.38801, MR 0123993
Reference: [19] Kopáček, J.: Matematika pro fyziky II.MFF UK, Praha, 1975.
Reference: [20] Pham Mau Quam: Introduction à la gomtrie des varits diffrentiables.Dunod, Paris, 1968.
Reference: [21] Shelekhov, A.: A good formula for $3$-web curvature tensor.Webs & Quasigroups 1 (1993), 44–50. MR 1224965
Reference: [22] Vinogradov, A. M., Yumaguzhin, V. A.: Differential invariants of webs on $2$-dimensional manifolds.Mat. Zametki 48, 26–37. MR 1081890
.

Files

Files Size Format View
ArchMathRetro_031-1995-1_9.pdf 275.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo