Title:
|
Parallelisability conditions for differentiable three-webs (English) |
Author:
|
Vanžurová, Alena |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
31 |
Issue:
|
1 |
Year:
|
1995 |
Pages:
|
75-84 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web. (English) |
Keyword:
|
distribution |
Keyword:
|
projector |
Keyword:
|
manifold |
Keyword:
|
three-web |
Keyword:
|
regular (parallelisable) web |
MSC:
|
53A60 |
idZBL:
|
Zbl 0835.53019 |
idMR:
|
MR1342378 |
. |
Date available:
|
2008-06-06T21:28:11Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107527 |
. |
Reference:
|
[1] Akivis, M. A.: Three-webs of multidimensional surfaces.Trudy geom. seminara 2 (1969), 7–31. (Russian) MR 0254760 |
Reference:
|
[2] Akivis, M. A.: Local differentiable quasigroups and three-webs of multidimensional surfaces.Studies in the Theory of Quasigroups and Loops, Stiintsa, Kishinev, 1973, pp. 3 – 12. (Russian) MR 0370391 |
Reference:
|
[3] Chern, S. S.: Eine Invariantentheorie der $3$-Gewebe aus $r$-dimensionalen Mannigfaltigkeiten in $R^{2n}$.Abhandl. Math. Sem. Hamburg Univ. 11 (1936), 333–358. |
Reference:
|
[4] Chern, S. S.: Web Geometry.Bull. Am. Math. Soc. 6 (1982), 1–8. Zbl 0483.53013, MR 0634430 |
Reference:
|
[5] Čadek, M., Šim¨a, J.: Decomposition of smooth functions of two multicodimensional variables.Czech. Math. J. 41(116) (1991), Praha, 342–358. MR 1105450 |
Reference:
|
[6] Goldberg, V. V.: Theory of multicodimensional $(n+1)$-webs.Kluwer Academic Publishers, Dordrecht (Boston, London), 1988. Zbl 0668.53001, MR 0998774 |
Reference:
|
[7] Goldberg, V. V.: Local differentiable quasigroups and webs.In: O Chein, H.O. Pflugfelder, J.D.H. Smith (eds.) Quasigroups and Loops, 1990. Zbl 0737.53015, MR 1125816 |
Reference:
|
[8] Kikkawa, M.: Canonical connections of homogeneous Lie loops and $3$-webs.Mem. Fac. Sci Shimane Univ 19 (1985), 37–55. Zbl 0588.53014, MR 0841222 |
Reference:
|
[9] Kikkawa, M.: Projectivity of homogeneous left loops.“Nonassociative algebras and relative topics”, World Scientific, 1991, pp. 77–99. Zbl 0788.53042, MR 1150252 |
Reference:
|
[10] Nagy, P. T.: On the canonical connection of a three-web.Publ. Math. Debrecen 32 (1985), 93-99. MR 0810595 |
Reference:
|
[11] Nagy, P. T.: Invariant tensor fields and the canonical connection of a $3$-web.Aeq. Math. 35 (1988), University of Waterloo, Birkhäuser Verlag, Basel, 31-44. |
Reference:
|
[12] Šim¨a, J.: Some factorization of matrix functions in several variables.Arch. Math. 28 (1992), Brno, 85–94. MR 1201870 |
Reference:
|
[13] Vanžura, J.: Integrability conditions for polynomial structures.Kōdai Math. Sem. Rep. 27 (1976), 42–50. MR 0400106 |
Reference:
|
[14] Vanžura, J.: Simultaneous integrability of an almost tangent structure and a distribution.Demonstratio Mathematica XIX No 1 (1986), 359–370. MR 0895009 |
Reference:
|
[15] Vanžurová, A.: On $(3,2,n)$-webs.Acta Sci. Math. 59 No 3-4, Szeged. Zbl 0828.53017, MR 1317181 |
Reference:
|
[16] Vanžurová, A.: On three-web manifolds.Report of the Czech Meeting 1993 on Incidence Structures, PU Olomouc, pp. 56–66. |
Reference:
|
[17] Vanžurová, A.: On torsion of a three-web.( to appear). |
Reference:
|
[18] Walker, G. A.: Almost-product structures.Differential geometry, Proc. of Symp. in Pure Math. vol. III, pp. 94-100. Zbl 0103.38801, MR 0123993 |
Reference:
|
[19] Kopáček, J.: Matematika pro fyziky II.MFF UK, Praha, 1975. |
Reference:
|
[20] Pham Mau Quam: Introduction à la gomtrie des varits diffrentiables.Dunod, Paris, 1968. |
Reference:
|
[21] Shelekhov, A.: A good formula for $3$-web curvature tensor.Webs & Quasigroups 1 (1993), 44–50. MR 1224965 |
Reference:
|
[22] Vinogradov, A. M., Yumaguzhin, V. A.: Differential invariants of webs on $2$-dimensional manifolds.Mat. Zametki 48, 26–37. MR 1081890 |
. |