Title:
|
A contact metric manifold satisfying a certain curvature condition (English) |
Author:
|
Cho, Jong Taek |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
31 |
Issue:
|
4 |
Year:
|
1995 |
Pages:
|
319-333 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. (English) |
Keyword:
|
contact metric manifolds |
Keyword:
|
Tanaka connection |
Keyword:
|
Jacobi operator |
MSC:
|
53C15 |
MSC:
|
53C25 |
MSC:
|
53C35 |
idZBL:
|
Zbl 0849.53030 |
idMR:
|
MR1390592 |
. |
Date available:
|
2008-06-06T21:29:47Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107554 |
. |
Reference:
|
[1] Berndt, J. and Vanhecke, L.: Two natural generalizations of locally symmetric spaces.Diff. Geom. Appl. 2 (1992), 57-80. MR 1244456 |
Reference:
|
[2] Blair, D. E.: Contact manifolds in Riemannian geometry.Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . Zbl 0319.53026, MR 0467588 |
Reference:
|
[3] Blair, D. E., Koufogiorgos, T., and Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$.Kodai Math.J. 13 (1990), 391-401. MR 1078554 |
Reference:
|
[4] Blair, D. E. and Sharma, R.: Three-dimensional locally symmetric contact metric manifolds.to appear in Boll.Un.Mat.Ital.. MR 1083268 |
Reference:
|
[5] Blair, D. E. and Vanhecke, L.: Symmetries and $\phi $-symmetric spaces.Tôhoku Math.J. 39 (1987), 373-383. MR 0902576 |
Reference:
|
[6] Cartan, E.: Lecons sur la géométrie des espaces de Riemann, 2nd éd..Gauthier-Villars, Paris (1946). MR 0020842 |
Reference:
|
[7] Cho, J. T.: On some classes of almost contact metric manifolds.Tsukuba J. Math. 19 (1995), 201-217. Zbl 0835.53054, MR 1346762 |
Reference:
|
[8] Cho, J. T.: On some classes of contact metric manifolds.Rend.Circ.Mat. Palermo XLIII (1994), 141–160. Zbl 0817.53019, MR 1305332 |
Reference:
|
[9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces.Niigata Univ. Doctorial Thesis (1994), . |
Reference:
|
[10] Olszak, Z.: On contact metric manifolds.Tôhoku Math. J. 31 (1979), . Zbl 0397.53026, MR 0538923 |
Reference:
|
[11] Takahashi, T.: Sasakian $\phi $-symmetric spaces.Tôhoku Math. J. 29 (1977), 91-113. MR 0440472 |
Reference:
|
[12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Japan J. Math. 2 (1976), 131-190. Zbl 0346.32010, MR 0589931 |
Reference:
|
[13] Tanno, S.: Ricci curvature of contact Riemannian manifolds.Tôhoku Math. J. 40 (1988), 441-448. MR 0957055 |
Reference:
|
[14] Tanno, S.: Variational problems on contact Riemannian manifolds,.Trans. Amer. Math. Soc. 314 (1989), 349-379. Zbl 0677.53043, MR 1000553 |
Reference:
|
[15] Tricerri, F. and Vanhecke, L.: Homogeneous structures on Riemannian manifolds.London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . MR 0712664 |
. |