Previous |  Up |  Next

Article

Title: The oscillation of an $m$th order perturbed nonlinear difference equation (English)
Author: Wong, P. J. Y.
Author: Agarwal, Ravi P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 1
Year: 1996
Pages: 13-27
Summary lang: English
.
Category: math
.
Summary: We offer sufficient conditions for the oscillation of all solutions of the perturbed difference equation $$|\Delta^{m} y(k)|^{\alpha-1}\Delta^{m} y(k)+Q(k,y(k-\sigma_{k}), \Delta y(k-\sigma_{k}),\cdots, \Delta^{m-2}y(k-\sigma_{k}))$$ \hfill $=P(k,y(k-\sigma_{k}),\Delta y(k-\sigma_{k}),\cdots, \Delta^{m-1}y(k-\sigma_{k})),~k\geq k_{0}$ where $\alpha>0.$ Examples which dwell upon the importance of our results are also included. (English)
Keyword: oscillatory solutions
Keyword: difference equations
MSC: 39A10
idZBL: Zbl 0870.39001
idMR: MR1399838
.
Date available: 2008-06-06T21:29:57Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107559
.
Reference: [1] Agarwal R. P.: Difference Equations and Inequalities.Marcel Dekker, New York, 1992. Zbl 0925.39001, MR 1155840
Reference: [2] Agarwal R. P.: Properties of solutions of higher order nonlinear difference equations I.An. St. Univ. Iasi 29(1983), 85-96. MR 0739573
Reference: [3] Agarwal R. P.: Difference calculus with applications to difference equations.in General Inequalities, ed. W. Walter, ISNM 71, Birkhaver Verlag, Basel (1984), 95-160. Zbl 0592.39001, MR 0821789
Reference: [4] Agarwal R. P.: Properties of solutions of higher order nonlinear difference equations II.An. St. Univ. Iasi 29(1985), 165-172. MR 0858057
Reference: [5] Grace S. R., Lalli B. S.: Oscillation theorems for $n$th order delay equations.J. Math. Anal. Appl. 91(1983), 342-366. MR 0690876
Reference: [6] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating arguments.SIAM J. Math. Anal. 15(1984), 308-316. Zbl 0542.34057, MR 0731869
Reference: [7] Hooker. J. W., Patula W. T.: A second order nonlinear difference equation: oscillation and asymptotic behavior.J. Math. Anal. Appl. 91(1983), 9-29. Zbl 0508.39005, MR 0688528
Reference: [8] Lakshmikantham V., Trigiante D.: Difference Equations with Applications to Numerical Analysis.Academic Press, New York, 1988. MR 0939611
Reference: [9] Popenda J. : Oscillation and nonoscillation theorems for second order difference equations.J. Math. Anal. Appl. 123(1987), 34-38. Zbl 0612.39002, MR 0881528
Reference: [10] Staikos V. A.: Basic results on oscillation for differential equations.Hiroshima Math. J. 10(1980), 495-516. Zbl 0453.34055, MR 0594131
Reference: [11] Thandapani E.: Oscillatory behavior of solutions of second order nonlinear difference equations.J. Math. Phys. Sci. 25(1991), 451-464.
Reference: [12] Thandapani E., Sundaram P.: Oscillation theorems for some even order nonlinear difference equations.preprint.
Reference: [13] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations.Math. Comp. Modelling 21(1995), 63-84. Zbl 0820.39002, MR 1316120
Reference: [14] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations.Dynamic Systems and Applications, to appear. Zbl 0840.34021, MR 1365834
Reference: [15] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations.J. Math. Anal. Applic., 198 (1996), 337-354. MR 1376268
Reference: [16] Wong P. J. Y., Agarwal R. P.: Oscillation theorems for certain second order nonlinear difference equations.to appear. Zbl 0874.39012, MR 1422774
Reference: [17] Wong P. J. Y., Agarwal R. P.: Oscillation and monotone solutions of a second order quasilinear difference equation.to appear.
Reference: [18] Wong P. J. Y., Agarwal R. P.: On the oscillation and asymptotically monotone solutions of second order quasilinear differential equations.Appl. Math. Comp., to appear. MR 1407599
Reference: [19] Wong P. J. Y., Agarwal R. P.: Oscillations and nonoscillations of half-linear difference equations generated by deviating arguments, Advances in Difference Equations II.Computers Math. Applic., to appear. MR 1666122
Reference: [20] Wong Z., Yu J.: Oscillation criteria for second order nonlinear difference equations.Funk. Ekv. 34(1991), 313-319.
.

Files

Files Size Format View
ArchMathRetro_032-1996-1_3.pdf 255.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo