Previous |  Up |  Next

Article

Keywords:
group algebra; n-weakly regular ring; n-regular ring
Summary:
We describe $n$-regular and $n$-weakly regular group algebras. $KG$ is $n$-regular if and only if one of the following conditions holds: \item{(1)} $char K=0$ and $G$ is locally finite; or \item{(2)} $char K=p$, $\,G$ is locally finite, $\,\Delta^p(G)$ is finite and contains all the elements of $G$ of $p$-power order and $\,rad(K\Delta^p(G))^n=0$.
References:
[1] Anderson, D., D.: Generalizations of Boolean rings. Boolean rings and von Neumann regular rings. Comment. Math. Univ. St. Pauli 35 (1986), 69-76. MR 0838191
[2] Auslander, M.: On regular group rings. Proc. Amer. Math. Soc. 8 (1957), 658-664. MR 0087670 | Zbl 0079.26703
[3] Connel, I.: On the group ring. Can. J. Math. 15 (1963), 650-685. MR 0153705
[4] Gupta, V.: A generalization of strongly regular rings. Acta Math. Hung. 43 (1984), No 1-2, 57-61. MR 0731964 | Zbl 0535.16015
[5] Passman, D. S.: Algebraic structure of group rings. Interscience, New-York, 1977. MR 0470211 | Zbl 0368.16003
[6] Vasantha Kandasamy, W. B.: s-weakly regular group rings. Archiv. Math. (Brno) 29 (1993), No 1-2, 39-41. MR 1242627 | Zbl 0812.16003
[7] Villamayor, O. E.: On weak dimenson of algebras. Pacif. J. Math. 9 (1959), 491-502. MR 0108527
[8] Sehgal, S. K.: Topics in group rings. Marcel Dekker,Inc., New-York and Basel, 1978. MR 0508515 | Zbl 0411.16004
Partner of
EuDML logo