Previous |  Up |  Next

Article

Title: Pivoting algorithm in class of ABS methods (English)
Author: Kálnová, Gabriela
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 3
Year: 1996
Pages: 167-180
Summary lang: English
.
Category: math
.
Summary: Summary: The paper deals with a pivoting modification of the algorithm in the class of ABS methods. Numerical experiments compare this pivoting modification with the fundamental version. A hybrid algorithm for the solution of the linear system with the Hankel matrix is introduced. (English)
Keyword: ABS methods
Keyword: pivoting algorithm
Keyword: Hankel matrix
Keyword: linear equations
MSC: 65F05
idZBL: Zbl 0906.65028
idMR: MR1421854
.
Date available: 2008-06-06T21:30:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107572
.
Reference: [1] Abaffy, J., Broyden, C.G., Spedicato, E.: A class of direct methods for linear equations.Numer.Math. 45 (1984), 361–376. MR 0769246
Reference: [2] Abaffy, J., Spedicato, E.: ABS projection algorithms mathematical techniques for linear and nonlinear equations.Ellis Horwood, Chichester, 1989. MR 1015928
Reference: [3] Bodon, E.: Numerical experiments with ABS algorithms on upper banded systems of linear equations.(1992), Quaderno DMSIA 17/92, University of Bergamo.
Reference: [4] Bodon, E.: Numerical experiments with ABS algorithms on banded systems of linear equations.(1992), Quaderno DMSIA 18/92, University of Bergamo.
Reference: [5] Bodon, E.: Numerical experiments with Gauss-ABS algorithms on tridiagonal systems of linear equations.(1992), Quaderno DMSIA 31/92, University of Bergamo.
Reference: [6] Bodon, E., Spedicato, E.: Numerical evaluation of the implicit LU, LQ and QU algorithms in the ABS class.(1992), Quaderno DMSIA 28/90, University of Bergamo.
Reference: [7] Deng, N., Vespucci, M.T.: Experiments with the ABS implici t Gauss-Cholesky algorithm on nested dissection matrices.(1991), Technical Report 1/69, Roma.
Reference: [8] Golub, G.H., Van Loan, Ch.F.: Matrix computation.The Johns Hopkins University Press, Baltimore and London, 1989.
Reference: [9] Phua, K. H.: Solving sparse linear systems by an ABS-metho d that corresponds to LU-decomposition.BIT 28 (1988), 709–718. MR 0963312
Reference: [10] Rissanen, J.: Solution of linear equations with Hankel an d Toeplitz matrices.Numer.Math. 22 (1974), 361–366. MR 0351057
.

Files

Files Size Format View
ArchMathRetro_032-1996-3_3.pdf 261.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo