Previous |  Up |  Next

Article

Title: Periodic solutions for nonlinear evolution inclusions (English)
Author: Kandilakis, Dimitrios A.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 3
Year: 1996
Pages: 195-209
Summary lang: English
.
Category: math
.
Summary: In this paper we prove the existence of periodic solutions for a class of nonlinear evolution inclusions defined in an evolution triple of spaces $(X,H,X^{*})$ and driven by a demicontinuous pseudomonotone coercive operator and an upper semicontinuous multivalued perturbation defined on $T\times X$ with values in $H$. Our proof is based on a known result about the surjectivity of the sum of two operators of monotone type and on the fact that the property of pseudomonotonicity is lifted to the Nemitsky operator, which we prove in this paper. (English)
Keyword: evolution triple
Keyword: compact embedding
Keyword: pseudomonotone operator
Keyword: demicontinuity
Keyword: coercive operator
Keyword: dominated convergence theorem
MSC: 34A60
MSC: 34C25
MSC: 34G20
MSC: 47H15
MSC: 47N20
idZBL: Zbl 0908.34043
idMR: MR1421856
.
Date available: 2008-06-06T21:31:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107574
.
Reference: [1] Ash, R.: Real Analysis and Probability.Academic Press, New York (1972). MR 0435320
Reference: [2] Becker, R. I.: Periodic solutions of semilinear equations of evolution of compact type.J. Math. Anal. Appl. 82 (1981), 33-48. Zbl 0465.34014, MR 0626739
Reference: [3] Brezis, H.: Operateurs Maximaux Monotones.North Holland, Amsterdam (1973). Zbl 0252.47055
Reference: [4] Browder, F.: Existence of periodic solutions for nonlinear equations of evolution.Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. Zbl 0135.17601, MR 0177295
Reference: [5] Browder, F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains.Proc. Nat. Acad. Sci. USA 74 (1977), 2659-2661. MR 0445124
Reference: [6] Chang, K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102-129. MR 0614246
Reference: [7] Blasi, F. S., Myjak, J.: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9-31. MR 0834135
Reference: [8] Diestel, J., Uhl, J. J.: Vector Measures.Math. Surveys, 15, AMS Providence, Rhode Island (1977). MR 0453964
Reference: [9] Goebel, K., Kirk, W.: Topics in Metric Fixed Point Theory.Cambridge Univ. Press, Cambridge (1990). MR 1074005
Reference: [10] Gossez, J. P., Mustonen, V.: Pseudomonotonicity and the Leray-Lions condition.Differential and Integral Equations 6 (1993), 37-45. MR 1190164
Reference: [11] Hirano, N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces.Proc. AMS 120 (1994), 185-192. Zbl 0795.34051, MR 1174494
Reference: [12] Hu, S., Papageorgiou, N. S.: On the existence of periodic solutions for a class of nonlinear evolution inclusions.Bolletino UMI 7-B (1993), 591-605. MR 1244409
Reference: [13] Hu, S., Papageorgiou, N. S.: Galerkin approximations for nonlinear evolution inclusions.Comm. Math. Univ. Carolinae 35 (1994), 705-720. MR 1321241
Reference: [14] Lions, J. L.: Quelques Methods de Resolution des Problemes aux Limites Nonlineaires.Dunod, Paris (1969).
Reference: [15] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions.Inter. J. Math. and Math. Sci. 10 (1987), 433-464. Zbl 0619.28009, MR 0896595
Reference: [16] Papageorgiou, N. S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [17] Prüss, J.: Periodic solutions for semilinear evolution equations.Nonl. Anal. TMA 3 (1979), 221-235.
Reference: [18] Ton, B.-A.: Nonlinear evolution equations in Banach spaces.Proc. AMS 109 (1990), 653-661.
Reference: [19] Vrabie, I.: Periodic solutions for nonlinear evolution equations in a Banach space.Proc. AMS 109 (1990), 653-661. Zbl 0701.34074, MR 1015686
Reference: [20] Wagner, D.: Survey of measurable selection theorems.SIAM J. Control Opt. 15 (1977), 859-903. Zbl 0427.28009, MR 0486391
Reference: [21] Zeidler, E.: Nonlinear Functinal Analysis and its Applications.Springer-Verlag, New York (1990).
.

Files

Files Size Format View
ArchMathRetro_032-1996-3_5.pdf 312.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo