Previous |  Up |  Next

Article

Title: Asymptotic behavior of solutions of third order delay differential equations (English)
Author: Cecchi, M.
Author: Došlá, Zuzana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 1
Year: 1997
Pages: 99-108
Summary lang: English
.
Category: math
.
Summary: We give an equivalence criterion on property A and property B for delay third order linear differential equations. We also give comparison results on properties A and B between linear and nonlinear equations, whereby we only suppose that nonlinearity has superlinear growth near infinity. (English)
Keyword: delay differential equation of third order
Keyword: asymptotic properties of nonoscillatory solutions
Keyword: properties A and B
Keyword: comparison theorems
MSC: 34C10
MSC: 34C20
MSC: 34K11
MSC: 34K25
idZBL: Zbl 0916.34059
idMR: MR1464304
.
Date available: 2008-06-06T21:32:39Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107600
.
Reference: [1] Cecchi M., Došlá Z., Marini M., Villari G.: On the qualitative behavior of solutions of third order differential equations.J. Math. Anal. Appl 197 (1996), 749–766. MR 1373077
Reference: [2] Cecchi M., Došlá Z., Marini M.: Comparison theorems for third order differential equations.Proceeding of Dynamic Systems and Applications, Vol.2 (1996), 99–106. MR 1419517
Reference: [3] Cecchi M., Došlá Z., Marini M.: An equivalence theorem on properties A, B for thir order differential equations.to appear in Annali Mat. Pura Appl.. MR 1625588
Reference: [4] Cecchi M., Došlá Z., Marini M.: On nonlinear oscillations for equations associated to disconjugate operators.Proceeding of WCNA’96, Athens (1996).
Reference: [5] Cecchi M., Marini M.: Oscillation results for Emden–Fowler type differential equations.to appear in JMAA.
Reference: [6] Džurina J.: Asymptotic properties of $n-$th order differential equations with delayed argument.Math. Nachr. 171 (1995), 149–156. MR 1316355
Reference: [7] Erbe L.: Oscillation and asymptotic behavior of solutions of third order differential delay equations.SIAM J. Math. Anal. 7 (1976), 491–499. Zbl 0356.34086, MR 0433001
Reference: [8] Kiguradze I. T., Chanturia T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer Academic Publishers, Dordrecht-Boston-London (1993). MR 1220223
Reference: [9] Koplatadze R.: On oscillatory properties of solutions of functional differential equations.Memoirs on Differential Eqs. and Math. Phys. 3 (1994). Zbl 0843.34070, MR 1375838
Reference: [10] Kusano T., Naito M.: Comparison theorems for functional differential equations with deviating arguments.J. Math. Soc. Japan 3 A (1981), 509–532. MR 0620288
Reference: [11] Mahfoud W.E.: Comparison theorems for delay differential equations.Pac. J. Math. 83 (1979), 187–197. Zbl 0441.34053, MR 0555047
Reference: [12] Philos Ch.G., Sficas Y.G.: Oscillatory and asymptotic behavior of second and third order retarded differential equations.Czech. Math. J. 32 (107) (1982), 169–182. MR 0654054
Reference: [13] Philos Ch.G., Sficas Y.G., Staikos V.A.: Some results on the asymptotic behavior of nonoscillatory solutions of differential equations with deviating arguments.J. Austral. Math. Soc. 32 (1982), . MR 0652407
.

Files

Files Size Format View
ArchMathRetro_033-1997-1_11.pdf 264.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo