Title:
|
Conjugacy criteria for second order linear difference equations (English) |
Author:
|
Došlý, Ondřej |
Author:
|
Řehák, Pavel |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
34 |
Issue:
|
2 |
Year:
|
1998 |
Pages:
|
301-310 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish conditions which guarantee that the second order difference equation \[\Delta ^2x_k+p_k x_{k+1}=0\] possesses a nontrivial solution with at least two generalized zero points in a given discrete interval (English) |
Keyword:
|
Discrete conjugacy criteria |
Keyword:
|
discrete Riccati equation |
Keyword:
|
phase function |
Keyword:
|
generalized zero points |
MSC:
|
39A10 |
MSC:
|
39A12 |
idZBL:
|
Zbl 0912.39008 |
idMR:
|
MR1645332 |
. |
Date available:
|
2009-02-17T10:12:13Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107655 |
. |
Reference:
|
[1] Ahlbrandt, C. D., Clark, S. L., Hooker, J. W., Patula, W. T.: A Discrete interpretation of Reid’s Roundabout Theorem for generalized differential systems.to appear in Comp. Math. Appl. MR 1284216 |
Reference:
|
[2] Ahlbrandt, C. D.,Peterson, A.: .Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati equations. Kluwer, Dordrecht/Boston/London 1996. Zbl 1067.92034, MR 1423802 |
Reference:
|
[3] Agarwal, R. P.: .Difference Equations and Inequalities, Theory, Methods and Applications, Pure and Appl. Math., M. Dekker, New York-Basel-Hong Kong, 1992. Zbl 1168.35387, MR 1155840 |
Reference:
|
[4] Bohner, M.: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions.J. Math. Anal. Appl 199 (1996), 804-826. Zbl 0855.39018, MR 1386607 |
Reference:
|
[5] Bohner, M., Došlý, O.: Disconjugacy and transformation for symplectic systems.to appear in Rocky Mountain J. Math. MR 1490271 |
Reference:
|
[6] Došlý, O.: The existence of conjugate points for self-adjoint differential equations.Proc. Roy. Soc. Edinburgh 113A (1989), 73-85. MR 1025455 |
Reference:
|
[7] Došlý, O.: Conjugacy criteria for second order differential equations.Rocky Mountain J. Math 23 (1993), 849-861. MR 1245450 |
Reference:
|
[8] Došlý, O.: Oscillation theory of differential and difference equations.Proc. Conf. Ordinary Diff. Equations and Appl., Poprad 1996. |
Reference:
|
[9] Došlý, O.: Linear Hamiltonian systems – continuous versus discrete.Proc. 7$^{th}$ Colloquium on Diff. Equations, Plovdiv 1996. |
Reference:
|
[10] Kelley, W. G., Peterson, A.: .Difference Equations: An Introduction with Applications, Acad. Press, San Diego, 1991. MR 1142573 |
Reference:
|
[11] Minargelli, A. B.: Volterra-Stieltjes Integral Equations and Ordinary Differential Expressions.LN No. 989, Springer Verlag, New York 1983. |
Reference:
|
[12] Müller-Pfeiffer, E.: Existence of conjugate points for second and fourth order differential equations.Proc. Roy. Soc. Edinburgh 89A (1981), 281-291. MR 0635764 |
Reference:
|
[13] Müller-Pfeiffer, E.: Nodal domains of one– or two–dimensional elliptic differential equations.Z. Anal. Anwendungen 7 (1988), 135-139. MR 0951346 |
Reference:
|
[14] Reid, W. T.: Generalized linear differential systems.J. Math. Mech. 8 (1959), 705-726. Zbl 0094.06001, MR 0107050 |
Reference:
|
[15] Swanson, C. A.: .Comparison and Oscillation Theory of Linear Differential Equations, Acad. Press, New York, 1968. Zbl 1168.92026, MR 0463570 |
Reference:
|
[16] Sturm, J. C. F.: Mémoire sur le équations differentielles linéaries du second ordre.Journal de Mathématiques Pures et Appliquées 1 (1836), 106-186. |
Reference:
|
[17] Tipler, F. J.: General relativity and conjugate differential equations.J. Differential Equations 30 (1978), 165-174. MR 0513268 |
Reference:
|
[18] Willet, D.: Classification of second order linear differential equations with respect to oscillation.Advances in Mathematics 3 (1969), 594-623. MR 0280800 |
. |