Previous |  Up |  Next

Article

Title: Natural affinors on $r$-jet prolongation of the tangent bundle (English)
Author: Mikulski, W. M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 2
Year: 1998
Pages: 321-328
Summary lang: English
.
Category: math
.
Summary: We deduce that for $n\ge 2$ and $r\ge 1$, every natural affinor on $J^rT$ over $n$-manifolds is of the form $\lambda \delta $ for a real number $\lambda $, where $\delta $ is the identity affinor on $J^rT$. (English)
Keyword: natural affinor
Keyword: jet prolongations
MSC: 53A55
MSC: 58A20
idZBL: Zbl 0915.58006
idMR: MR1645340
.
Date available: 2009-02-17T10:12:22Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107657
.
Reference: [1] Doupovec, M.: Natural transformations between $TTT^*M$ and $TT^*TM$.Czechoslovak Math. J. 43 (118) 1993, 599-613. Zbl 0806.53024, MR 1258423
Reference: [2] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles.Suppl. Rendiconti Circolo Mat. Palermo, 1993. MR 1246623
Reference: [3] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer Verlag, Berlin, 1993. MR 1202431
Reference: [4] Kolář, I., Modugno, M.: Torsion of connections on some natural bundles.Diff. Geom. and Appl. 2 (1992), 1-16. MR 1244453
Reference: [5] Kurek, J.: Natural affinors on higher order cotangent bundles.Arch. Math. (Brno) 28 (1992), 175-180. MR 1222284
Reference: [6] Zajtz, A.: On the order of natural operators and liftings.Ann. Polon. Math. 49 (1988), 169-178. MR 0983220
.

Files

Files Size Format View
ArchMathRetro_034-1998-2_10.pdf 240.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo