Previous |  Up |  Next

Article

Title: Extremal solutions and relaxation for second order vector differential inclusions (English)
Author: Avgerinos, Evgenios P.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 4
Year: 1998
Pages: 427-434
Summary lang: English
.
Category: math
.
Summary: In this paper we consider periodic and Dirichlet problems for second order vector differential inclusions. First we show the existence of extremal solutions of the periodic problem (i.e. solutions moving through the extreme points of the multifunction). Then for the Dirichlet problem we show that the extremal solutions are dense in the $C^1(T,R^N)$-norm in the set of solutions of the “convex” problem (relaxation theorem). (English)
Keyword: lower semicontinuous multifunctions
Keyword: continuous embedding
Keyword: compact embedding
Keyword: continuous selector
Keyword: extremal solution
Keyword: relaxation theorem
MSC: 34A60
MSC: 34B15
MSC: 34C25
idZBL: Zbl 0973.34010
idMR: MR1679637
.
Date available: 2009-02-17T10:15:44Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107670
.
Reference: [1] Benamara M.: Points extremaux, multiapplications et fonctionelles integrales.These de 3eme cycle, Universite de Grenoble 1975.
Reference: [2] Bressan A., Colombo G.: Extensions and selections on maps with decomposable values.Studia Math., XC(1988), 69-85. MR 0947921
Reference: [3] Brezis H.: Analyse Fonctionelle.Masson, Paris (1983). MR 0697382
Reference: [4] Frigon M.: Problemes aux limites pour des inclusions differentilles de type semi-continues inferieument.Rivista Math. Univ. Parma 17(1991), 87-97. MR 1174938
Reference: [5] Gutman S.: Topological equivalence in the space of integrable vector valued functions.Proc. AMS. 93(1985), 40-42. Zbl 0529.46027, MR 0766523
Reference: [6] Kisielewicz M.: Differential Inclusions and Optimal Control.Kluwer, Dordrecht, The Netherlands, (1991). MR 1135796
Reference: [7] Klein E., Thompson A.: Theory of Correspondences.Wiley, New York, (1984). Zbl 0556.28012, MR 0752692
Reference: [8] Papageorgiou N. S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica, 32, (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [9] Šeda V.: On some nonlinear boundary value problems for ordinary differential equations.Archivum Math. (Brno) 25(1989), 207-222. MR 1188065
Reference: [10] Tolstonogov A. A.: Extreme continuous selectors for multivalued maps and the bang-bang principle for evolution equations.Soviet. Math. Doklady 42(1991), 481-485. MR 1121349
Reference: [11] Wagner D.: Surveys of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 857-903. MR 0486391
.

Files

Files Size Format View
ArchMathRetro_034-1998-4_2.pdf 249.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo