Previous |  Up |  Next


Title: A new infinite order formulation of variational sequences (English)
Author: Vitolo, Raffaele
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 4
Year: 1998
Pages: 483-504
Summary lang: English
Category: math
Summary: The theory of variational bicomplexes is a natural geometrical setting for the calculus of variations on a fibred manifold. It is a well–established theory although not spread out very much among theoretical and mathematical physicists. Here, we present a new approach to infinite order variational bicomplexes based upon the finite order approach due to Krupka. In this approach the information related to the order of jets is lost, but we have a considerable simplification both in the exposition and in the computations. We think that our infinite order approach could be easily applied in concrete situations, due to the conceptual simplicity of the scheme. (English)
Keyword: fibred manifold
Keyword: jet space
Keyword: infinite order jet space
Keyword: variational bicomplex
Keyword: variational sequence 483504
MSC: 49J45
MSC: 58A12
MSC: 58A20
MSC: 58E30
MSC: 58J10
idZBL: Zbl 0970.58002
idMR: MR1679643
Date available: 2009-02-17T10:16:12Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Anderson I. M., Duchamp T.: On the existence of global variational principles.Amer. Math. J. 102 (1980), 781-868. Zbl 0454.58021, MR 0590637
Reference: [2] Bauderon M.: Le problème inverse du calcul des variations.Ann. de l’I.H.P. 36, n. 2 (1982), 159-179. Zbl 0519.58027, MR 0662883
Reference: [3] Bott R., Tu L. W.: Differential Forms in Algebraic Topology.GTM 82 Springer–Verlag, Berlin, 1982. Zbl 0496.55001, MR 0658304
Reference: [4] Dedecker P., Tulczyjew W. M.: Spectral sequences and the inverse problem of the calculus of variations.In Internat. Coll. on Diff. Geom. Methods in Math. Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics 836 Springer–Verlag, Berlin, 1980, 498-503. MR 0607719
Reference: [5] Ferraris M., Francaviglia M.: Global Formalism in Higher Order Calculus of Variations.Diff. Geom. and its Appl., Part II, Proc. of the Conf. University J. E. Purkyně, Brno, 1984, 93-117. MR 0793201
Reference: [6] Greub W.: Multilinear Algebra.Springer–Verlag, 1978. Zbl 0387.15001, MR 0504976
Reference: [7] Kolář I.: A geometrical version of the higher order Hamilton formalism in fibred manifolds.Jour. Geom. Phys. 1, n. 2 (1984), 127-137. MR 0794983
Reference: [8] Kolář I., Vitolo R.: On the Helmholtz operator for Euler morphisms.preprint 1997. MR 2006065
Reference: [9] Krupka D.: Variational sequences on finite order jet spaces.Diff. Geom. and its Appl., Proc. of the Conf. World Scientific, New York, 1990, 236-254. Zbl 0813.58014, MR 1062026
Reference: [10] Krupka D.: Topics in the calculus of variations: finite order variational sequences.Diff. Geom. and its Appl., Proc. of the Conf., Opava (Czech Republic), (1993) 473-495. Zbl 0811.58018, MR 1255563
Reference: [11] Kuperschmidt B. A.: Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism.Lecture Notes in Math. 775: Geometric Methods in Mathematical Physics, Springer, Berlin, (1980), 162-218. MR 0569303
Reference: [12] Mangiarotti L., Modugno M.: Fibered Spaces, Jet Spaces and Connections for Field Theories.Int. Meet. on Geometry and Physics, Proc. of the Conf. Pitagora Editrice, Bologna, 1983, 135-165. Zbl 0539.53026, MR 0760841
Reference: [13] Modugno M., Vitolo R.: Quantum connection and Poincaré–Cartan form.Conference in honour of A. Lichnerowicz, Frascati, ottobre 1995; ed. G. Ferrarese, Pitagora, Bologna.
Reference: [14] Olver P. J., Shakiban C.: A Resolution of the Euler Operator.Proc. Am. Math. Soc. 69 (1978), 223-229. Zbl 0395.49002, MR 0486822
Reference: [15] Saunders D. J.: The Geometry of Jet Bundles.Cambridge Univ. Press, 1989. Zbl 0665.58002, MR 0989588
Reference: [16] Takens F.: A global version of the inverse problem of the calculus of variations.J. Diff. Geom. 14 (1979), 543-562. Zbl 0463.58015, MR 0600611
Reference: [17] Tulczyjew W. M.: The Lagrange Complex.Bull. Soc. Math. France 105 (1977), 419-431. Zbl 0408.58020, MR 0494272
Reference: [18] Tulczyjew W. M.: The Euler-Lagrange Resolution.Internat. Coll. on Diff. Geom. Methods in Math. Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics 836 Springer–Verlag, Berlin, 1980, 22-48. MR 0607685
Reference: [19] Vinogradov A. M.: On the algebro-geometric foundations of Lagrangian field theory.Soviet Math. Dokl. 18 (1977), 1200-1204. Zbl 0403.58005, MR 0501142
Reference: [20] Vinogradov A. M.: A spectral sequence associated with a non-linear differential equation, and algebro–geometric foundations of Lagrangian field theory with constraints.Soviet Math. Dokl. 19 (1978), 144-148.
Reference: [21] Vitolo R.: Finite order Lagrangian bicomplexes.Math. Proc. of the Camb. Phil. Soc., to appear 124 n. 3, 1998.
Reference: [22] Vitolo R.: On different geometric formulations of Lagrangian formalism.preprint 1997, to appear on Diff. Geom. and Appl. MR 1692446
Reference: [23] Wells R. O.: Differential Analysis on Complex Manifolds.GTM 65 Springer–Verlag, Berlin, 1980. Zbl 0435.32004, MR 0608414


Files Size Format View
ArchMathRetro_034-1998-4_8.pdf 337.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo