Previous |  Up |  Next

Article

Title: On-line packing regular boxes in the unit cube (English)
Author: Januszewski, Janusz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 2
Year: 1999
Pages: 97-101
Summary lang: English
.
Category: math
.
Summary: We describe a class of boxes such that every sequence of boxes from this class of total volume smaller than or equal to 1 can be on-line packed in the unit cube. (English)
Keyword: packing
Keyword: on-line packing
Keyword: box
MSC: 05B40
MSC: 52C17
idZBL: Zbl 1049.52016
idMR: MR1711677
.
Date available: 2008-06-06T22:22:40Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107686
.
Reference: [1] Groemer, H.: Covering and packing by sequences of convex sets.Discrete Geometry and Convexity, Annals of the New York Academy of Science 440 (1985), 262-278. MR 0809212
Reference: [2] Januszewski, J., Lassak, M., Rote, G., Woeginger, G.: On-line $q$-adic covering by the method of the $n$-th segment and its application to on-line covering by cubes.Beitr. Alg. Geom. 37 (1996) No. 1, 51-56. MR 1407805
Reference: [3] Kuperberg, W.: Problem 74: Ein Intervallüberdeckungsspiel.Math. Semesterber. 41 (1994), 207-210.
Reference: [4] Lassak, M.: On-line packing sequences of segments, cubes and boxes.Beitr. Alg. Geom. 38 (1997), 377–384. Zbl 0889.52025, MR 1473115
Reference: [5] Lassak, M.: A survey of algorithms for on-line packing and covering by sequences of convex bodies.Bolyai Society Mathematical Studies 6 (1997), 129–157. Zbl 0883.52014, MR 1470756
.

Files

Files Size Format View
ArchMathRetro_035-1999-2_1.pdf 296.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo