Article
Keywords:
Hamiltonian vector fields; Poisson bracket; pseudogroup action
Summary:
Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
References:
[1] Bénalili M.:
Fibrés naturels définis sur la catégorie des $\Gamma -$variétés. Circolo Mat. di Palermo, 13, (1994), 309-328.
MR 1344871
[2] Epstein D. B. A., Thurston W. P.:
Transformation groups and natural bundles. Proc. London Math. Soc. 38 (1979), 219-237.
MR 0531161 |
Zbl 0409.58001
[3] Omori H.:
Infinite dimensional Lie transformation groups. Lect. Notes in Math. (427), Springer Verlag.
MR 0431262 |
Zbl 0328.58005
[4] Libermann P., Marle C. M.:
Symplectic Geometry and Analytical Mechanics. D. Reidel Publishing Company Holland (1987).
MR 0882548 |
Zbl 0643.53002
[5] Palais R. S., Terng C. L.:
Natural bundles have finite order. Topology 16 (1978), 271-277.
MR 0467787