Previous |  Up |  Next

Article

Title: On the structure of the solution set of a functional-differential system on an unbounded interval (English)
Author: Kubáček, Zbyněk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 3
Year: 1999
Pages: 215-228
Summary lang: English
.
Category: math
.
Summary: It is proved that under some conditions the set of all solutions of an initial value problem for $n$-th order functional differential system on an unbounded interval is a compact $R_\delta $. (English)
Keyword: initial value problem
Keyword: functional differential system
Keyword: $R_\delta$-set
MSC: 34K05
MSC: 34K12
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1054.34103
idMR: MR1725839
.
Date available: 2008-06-06T22:23:14Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107697
.
Reference: [1] Andres J., Gabor G., Górniewicz L.: Boundary value problems on infinite intervals.Trans. Am. Math. Soc. (to appear). MR 1603870
Reference: [2] Andres J., Gabor G., Górniewicz L.: Topological structure of solution sets to multivalued asymptotic problems.Přírodovědecká fakulta UP Olomouc, Katedra mat. analýzy a aplikací matematiky, Preprint 1, 1999. MR 1603870
Reference: [3] Aubin J. P., Cellina A.: Differential Inclusions, Set-Valued Maps and Viability Theory.Berlin, Springer-Verlag 1984. Zbl 0538.34007, MR 0755330
Reference: [4] Kubáček Z.: On the structure of the fixed point sets of some compact maps in the Fréchet space.Mathematica Bohemica, 118 (1993), No. 4, 343–358. MR 1251881
Reference: [5] Šeda V., Belohorec Š.: A remark on second order functional differential systems.Archivum Mathematicum (Brno), 29 (1993), No. 3-4, 169–176. Zbl 0804.34060, MR 1263119
Reference: [6] Šeda V., Eliaš J.: On the initial value problem for functional differential systems.Proc. of the Georgian Acad. of Sciences, Mathematics 1 (1993), No. 4, 467–476. Zbl 0801.34062, MR 1262578
Reference: [7] Šeda V., Kubáček Z.: On the connectedness of the set of fixed points of a compact operator in the Fréchet space $C^m([b,\infty ),\text{R}^n)$.Czech. Math. J., 42(117) (1992), 577–588. MR 1182189
Reference: [8] Vidossich G.: A fixed point theorem for function spaces.J. Math. Anal. Appl. 36 (1971), 581–587. Zbl 0194.44903, MR 0285945
.

Files

Files Size Format View
ArchMathRetro_035-1999-3_3.pdf 371.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo