Previous |  Up |  Next

Article

Title: Stochastic parallel transport and connections of $H^2M$ (English)
Author: Catuogno, Pedro
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 4
Year: 1999
Pages: 305-315
Summary lang: English
.
Category: math
.
Summary: In this paper we prove that there is a bijective correspondence between connections of $H^2M$, the principal bundle of the second order frames of $M$, and stochastic parallel transport in the tangent space of $M$. We construct in a direct geometric way a prolongation of connections without torsion of $M$ to connections of $H^2M$. We interpret such prolongation in terms of stochastic calculus. (English)
Keyword: second order geometry
Keyword: stochastic calculus
Keyword: connections
Keyword: parallel transport
MSC: 53B15
MSC: 53C05
MSC: 58J65
idZBL: Zbl 1049.58035
idMR: MR1744518
.
Date available: 2008-06-06T22:24:41Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107705
.
Reference: [1] Bismut J. M.: Mécanique Aléatorie.Lecture Notes in Mathematics 866, Springer 1981. MR 0629977
Reference: [2] Catuogno P. J.: Second Order Connections and Stochastic Calculus.Relatorio de Pesquisa. Unicamp, 1995.
Reference: [3] Cordero L. A., Dobson C. T. J., de León M.: Differential Geometry of Frame Bundles.Kluwer Acad. Pub. 1988.
Reference: [4] Emery M.: Stochastic Calculus in Manifolds.Springer-Verlag, 1989. Zbl 0697.60060, MR 1030543
Reference: [5] Emery M.: On Two Transfer Principles in Stochastic Differential Geometry.Séminaire de Probabilités XXIV. Lecture Notes in Mathematics 1426, Springer 1990. Zbl 0704.60066, MR 1071558
Reference: [6] Gancarzewicz J.: Connections of Order r.Ann. Pol. Math. 34, 70–83, 1977. Zbl 0347.53008, MR 0440471
Reference: [7] Ikeda N., Watanabe S.: Stochastic Differential Equations and Diffusion Processes.North-Holland 1981. Zbl 0495.60005, MR 1011252
Reference: [8] Itô K.: Stochastic Parallel Displacement.Probabilistic Methods in Differential Equations. Lecture Notes in Mathematics 451, Springer 1975. Zbl 0308.60027, MR 0394905
Reference: [9] Janyška J., Kolář I.: On the Connections Naturally Induced on the Second Order Frame Bundle.Archivum Mathematicum (Brno) 22, 21–28, 1986. Zbl 0628.53034, MR 0868117
Reference: [10] Kobayashi S.: Canonical Forms on Frame Bundles of Higher Order Contact.Proc. Symp. Pure Math. 3, 186–193, 1961. MR 0126810
Reference: [11] Kobayashi S., Nomizu K.: Foundations of Differential Geometry.Interscience, 1 (1963), 2 (1968). Zbl 0119.37502, MR 0152974
Reference: [12] Kolář I.: On some Operations with Connections.Math. Nachr. 69, 297–306, 1975. Zbl 0318.53034, MR 0391157
Reference: [13] Meyer P. A. : Géométrie Différentielle Stochastique.Séminaire de Probabilités XV. Lecture Notes in Mathematics 851, Springer 1981.
Reference: [14] Meyer P. A. : Géométrie Différentielle Stochastique (bis).Séminaire de Probabilités XVI. Lecture Notes in Mathematics 921, Springer 1982. Zbl 0539.58039, MR 0658725
Reference: [15] Schwartz L.: Géométrie Différentielle du 2$^{\text{e}}$ordre, Semimartingales et Équations Différentielle Stochastiques sur une Variété Différentielle.Séminaire de Probabilités XVI. Lecture Notes in Mathematics 921, Springer 1982. MR 0658722
Reference: [16] Shigekawa I.: On Stochastic Horizontal Lifts.Z. Wahrscheinlichkeitsheorie verw. Geviete 59, 211–221, 1982. Zbl 0487.60056, MR 0650613
.

Files

Files Size Format View
ArchMathRetro_035-1999-4_3.pdf 367.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo