Previous |  Up |  Next

Article

Title: Fixed point theorems for weakly sequentially closed maps (English)
Author: O'Regan, Donal
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 1
Year: 2000
Pages: 61-70
Summary lang: English
.
Category: math
.
Summary: A number of fixed point theorems are presented for weakly contractive maps which have weakly sequentially closed graph. Our results automatically lead to new existence theorems for differential inclusions in Banach spaces relative to the weak topology. (English)
Keyword: fixed points
Keyword: weakly sequentially closed maps
Keyword: weakly contractive maps
MSC: 34G25
MSC: 47H10
MSC: 47J05
idZBL: Zbl 1049.47051
idMR: MR1751614
.
Date available: 2008-06-06T22:25:14Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107718
.
Reference: [1] Aliprantis C. D., Border K. C.: Infinite dimensional analysis.Springer-Verlag Berlin, 1985.
Reference: [2] Arino O., Gautier S., Penot J. P.: A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations.Funkc. Ekvac. 27 (1984), 273–279. MR 0794756
Reference: [3] Chow S. N., Schuur J. D.: An existence theorem for ordinary differential equations in Banach spaces.Bull. Amer. Math. Soc. 77 (1971), 1018–1020. Zbl 0264.34072, MR 0287127
Reference: [4] Chow S. N., Schuur J. D.: Fundamental theory of contingent differential equations in Banach spaces.Trans. Amer. Math. Soc. 179 (1973), 133–144. MR 0324162
Reference: [5] Cichoń M.: Weak solutions of differential equations in Banach spaces.Discuss. Mathematicae–Differential Inclusions, 15 (1995), 5–14. MR 1344523
Reference: [6] Edwards R. E.: Functional analysis, theory and applications.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256
Reference: [7] Geitz R. F.: Pettis integration.Proc. Amer. Math. Soc. 82 (1981), 81–86. Zbl 0506.28007, MR 0603606
Reference: [8] Himmelberg C. J.: Fixed points of compact multifunctions.Jour. Math. Anal. Appl. 38 (1972), 205–207. Zbl 0225.54049, MR 0303368
Reference: [9] Köthe G.: Topological vector spaces I.Springer-Verlag Berlin, 1965. MR 0551623
Reference: [10] Mitchell A. R., Smith C. K. L.: An existence theorem for weak solutions of differential equations in Banach spaces.In: Nonlinear Equations in Abstract Spaces (edited by V. Lakshmikantham), Academic Press (1978), 387–404. Zbl 0452.34054, MR 0502554
Reference: [11] O’Regan D.: Integral equations in reflexive Banach spaces and weak topologies.Proc. Amer. Math. Soc. 124 (1996), 607–614. MR 1301043
Reference: [12] O’Regan D.: Fixed point theory for weakly sequentially continuous mappings.Mathematical and Computer Modelling 27(5) (1998), 1–14. Zbl 1185.34026, MR 1616796
Reference: [13] O’Regan D.: Weak solutions of ordinary differential equations in Banach spaces.Applied Math. Letters 12(1) (1999), 101–105. Zbl 0933.34068, MR 1663477
Reference: [14] O’Regan D.: Fixed point theory for weakly contractive maps with applications to operator inclusions in Banach spaces relative to the weak topology.Zeitschrift für Analysis und ihre Anwendungen 17 (1998), 282–296. Zbl 0911.47057, MR 1632523
Reference: [15] O’Regan D.: Nonlinear operator approximation theory.Numerical Functional Analysis and Optimization 19(5/6) (1998), 587–592. MR 1636474
Reference: [16] Smith C. K. L.: Measure of nonconvergence and noncompactness.Ph.D thesis, University of Texas at Arlington, 1978. MR 2628255
Reference: [17] Szep A.: Existence theorems for weak solutions of ordinary differential equations in reflexive Banach spaces.Studia Sci. Math. Hungar. 6 (1971), 197–203. MR 0330688
.

Files

Files Size Format View
ArchMathRetro_036-2000-1_7.pdf 320.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo