Previous |  Up |  Next

Article

Title: Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring (English)
Author: Pastijn, F.
Author: Zhao, Xianzhong
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 2
Year: 2000
Pages: 77-93
Summary lang: English
.
Category: math
.
Summary: The idempotent semirings for which Green’s ${\cal D}$-relation on the multiplicative reduct is a congruence relation form a subvariety of the variety of all idempotent semirings. This variety contains the variety consisting of all the idempotent semirings which do not contain a two-element monobisemilattice as a subsemiring. Various characterizations will be given for the idempotent semirings for which the ${\cal D}$-relation on the multiplicative reduct is the least lattice congruence. (English)
Keyword: idempotent semiring
Keyword: variety
Keyword: Green relations
Keyword: band
Keyword: bisemilattice
MSC: 16Y60
MSC: 20M10
idZBL: Zbl 1051.16027
idMR: MR1761613
.
Date available: 2008-06-06T22:25:21Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107721
.
Reference: [1] Howie J. M.: Fundamentals of Semigroup Theory.Oxford Science Publications, Oxford, 1995. Zbl 0835.20077, MR 1455373
Reference: [2] McKenzie R., and A. Romanowska: Varieties of $\cdot $-distributive bisemilattices.Contributions to General Algebra, (Proc. Klagenfurt Conf., Klagenfurt 1978), 213–218, Heyn, Klagenfurt, 1979. MR 0537422
Reference: [3] Pastijn F., and Y. Q. Guo: The lattice of idempotent distributive semiring varieties.Science in China (Series A) 42 (8) (1999), 785–804. MR 1738550
Reference: [4] Sen M. K., Guo Y. Q., and K. P. Shum: A class of idempotent semirings.preprint. MR 1828821
.

Files

Files Size Format View
ArchMathRetro_036-2000-2_1.pdf 323.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo