Previous |  Up |  Next

Article

Title: A note on some discrete valuation rings of arithmetical functions (English)
Author: Schwab, Emil D.
Author: Silberberg, Gheorghe
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 2
Year: 2000
Pages: 103-109
Summary lang: English
.
Category: math
.
Summary: The paper studies the structure of the ring A of arithmetical functions, where the multiplication is defined as the Dirichlet convolution. It is proven that A itself is not a discrete valuation ring, but a certain extension of it is constructed,this extension being a discrete valuation ring. Finally, the metric structure of the ring A is examined. (English)
Keyword: discrete valuation ring
Keyword: arithmetical function
Keyword: Dirichlet convolution
MSC: 11A25
MSC: 13F30
idZBL: Zbl 1058.11007
idMR: MR1761615
.
Date available: 2008-06-06T22:25:27Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107723
.
Reference: [1] Karpilovsky G.: Field theory.Marcel Dekker Inc. 1988, New York, Basel. Zbl 0677.12010, MR 0972982
Reference: [2] McCarthy P. J.: Regular arithmetical convolutions.Portugal. Math. 27 (1968), 1–13. Zbl 0203.35304, MR 0271015
Reference: [3] McCarthy P. J.: Introduction to arithmetical functions.1986, Springer-Verlag. Zbl 0591.10003, MR 0815514
Reference: [4] Narkiewicz W.: On a class of arithmetical convolutions.Colloq. Math. 10 (1963), 81–94. Zbl 0114.26502, MR 0159778
Reference: [5] Schwab E. D.: Multiplicative and additive elements in the ring of formal power series.PU.M.A. Vol. 4 (1993), 339–346. Zbl 0806.13010, MR 1283983
Reference: [6] Yokom K. L.: Totally multiplicative functions in regular convolution rings.Canadian Math. Bulletin 16 (1973), 119–128. MR 0325502
.

Files

Files Size Format View
ArchMathRetro_036-2000-2_3.pdf 304.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo