Previous |  Up |  Next

Article

Title: On the generalized boundary value problem (English)
Author: Rudolf, Boris
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 2
Year: 2000
Pages: 125-137
Summary lang: English
.
Category: math
.
Summary: In the paper it is proved that the generalized linear boundary value problem generates a Fredholm operator. Its index depends on the number of boundary conditions. The existence results of Landesman-Lazer type are given as an application to nonlinear problems by using dual generalized boundary value problems. (English)
Keyword: Fredholm mapping
Keyword: generalized BVP
Keyword: dual problem
Keyword: bounded nonlinearity
Keyword: Landesman-Lazer conditions
MSC: 34B05
MSC: 34B10
MSC: 34B15
MSC: 47A53
MSC: 47J05
MSC: 47N20
idZBL: Zbl 1054.34024
idMR: MR1761617
.
Date available: 2008-06-06T22:25:32Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107725
.
Reference: [1] Grossinho, M. R.: Some existence result for nonselfadjoint problems at resonance.Contemporary Mathematics 72 (1988), 107–119. MR 0956482
Reference: [2] Hartman, P.: Ordinary Differential Equations.John Wiley & Sons, New York-London-Sydney, 1964. Zbl 0125.32102, MR 0171038
Reference: [3] Landesman, E. M. and Lazer, A. C.: Nonlinear perturbations of a linear elliptic boundary value problem.J.Math.Mech. 19 (1970), 609–623. MR 0267269
Reference: [4] Mawhin, J.: Points fixes, points critiques et problemes aux limites.Sémin. math. Sup.no.92, Presses Univ. Montréal, Montréal, 1985. Zbl 0561.34001, MR 0789982
Reference: [5] Przeradzki, B.: Three methods for the study of semilinear equations at resonance.Colloquium Mathematicum 66 (1993), 109–129. Zbl 0828.47054, MR 1242650
Reference: [6] Rachůnkov , I.: An existence theorem of the Leray-Schauder type for four-point boundary value problems.Acta UPO Fac.Rer.Nat. 100 (1991), 49–58. MR 1166425
Reference: [7] Rachůnkov , I.: Multiplicity results for four-point boundary value problems.Nonlinear Analysis TMA 18 (1992), 497–505. MR 1152724
Reference: [8] Rudolf, B.: The generalized boundary value problem is a Fredholm mapping of index zero.Archivum Mathematicum 31 (1995), 55–58. Zbl 0830.34013, MR 1342375
Reference: [9] Šeda, V.: Fredholm mappings and the generalized boundary value problem.Differential and Integral Equations 8 (1995), 19–40. MR 1296108
Reference: [10] Šeda, V.: Generalized boundary value problems and Fredholm mappings.Nonlinear Analysis TMA 30 (1997), 1607–1616. MR 1490083
Reference: [11] Šeda, V.: Generalized boundary value problems with linear growth.Mathematica Bohemica 123 (1998), 385–404. MR 1667111
Reference: [12] Trenogin, V. A.: Functional Analysis.Nauka, Moscow, 1980. (Russian) Zbl 0517.46001, MR 0598629
Reference: [13] Zeidler, E.: Applied Functional Analysis.Springer-Verlag, New York Berlin Heidelberg, 1995. Zbl 0834.46002, MR 1347692
.

Files

Files Size Format View
ArchMathRetro_036-2000-2_5.pdf 333.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo