Previous |  Up |  Next

Article

Title: Some $\lambda $-sequence spaces defined by a modulus (English)
Author: Malkowsky, Eberhard
Author: Savas, Ekrem
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 3
Year: 2000
Pages: 219-228
Summary lang: English
.
Category: math
.
Summary: The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function. (English)
Keyword: FK
Keyword: AK spaces
Keyword: paranorm
Keyword: modulus functions
Keyword: almost convergence
Keyword: statistical convergence
Keyword: de la Vallée–Poussin means
MSC: 40H05
MSC: 46A45
MSC: 47B07
idZBL: Zbl 1046.40011
idMR: MR1785040
.
Date available: 2008-06-06T22:25:59Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107735
.
Reference: [1] P. Erdös, Tenenbaum: Sur les densities des certaines suites d’entiers.Proc. London Math. Soc (3), 59, (1989), 417–438 MR 1014865
Reference: [2] H. Fast: Sur la convergence statistique.Colloq. Math. 2, (1951), 241–244 Zbl 0044.33605, MR 0048548
Reference: [3] I. J. Maddox: On Kuttner’s theorem.J. London Math. Soc. 43, (1968), 285–290 Zbl 0155.38802, MR 0225044
Reference: [4] I. J. Maddox: On strong almost convergence.Math. Proc. Camb. Phil. Soc. 85, (1979), 345–350 Zbl 0417.40007, MR 0516094
Reference: [5] I. J. Maddox: Sequence spaces defined by a modulus.Math. Proc. Camb. Phil. Soc., 100, (1986), 161–166 Zbl 0631.46010, MR 0838663
Reference: [6] I. J. Maddox: Inclusions between FK–spaces and Kuttner’s theorem.Math. Proc. Camb. Phil. Soc., 101, (1987), 523–527 Zbl 0631.46009, MR 0878899
Reference: [7] Nakano H.: Concave modulus.J. Math. Soc. Japon. 5, (1953), 29-49. MR 0058882
Reference: [8] W. H. Ruckle: FK spaces in which the sequence of coordinate vectors is bounded.Canad. J. Math., 25, (1973), 973–978 Zbl 0267.46008, MR 0338731
Reference: [9] E. Savas: On some generalized sequence spaces defined by a modulus.Indian J. Pure appl. Math., 30(5), (1999), 459–464 Zbl 0928.40006, MR 1694693
Reference: [10] E. Savas: Strong almost convergence and almost $\lambda $–statistical convergence.Hokkaido J. Math. (to appear) Zbl 0963.40001, MR 1795490
Reference: [11] A. Wilansky: Functional Analysis.Blaisdell Publishing Company, 1964 Zbl 0136.10603, MR 0170186
Reference: [12] A. Wilansky: Summability through Functional Analysis.North–Holland Mathematical Studies 85, 1984 Zbl 0531.40008, MR 0738632
Reference: [13] A. Zygmund: Trigonometric Series.Second Edition, Cambridge University Press (1979)
.

Files

Files Size Format View
ArchMathRetro_036-2000-3_8.pdf 335.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo