Previous |  Up |  Next

Article

Title: A modified strong squeezing property and the existence of inertial manifolds of semiflows (English)
Author: Koksch, Norbert
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 477-486
.
Category: math
.
MSC: 34C30
MSC: 34G20
MSC: 35B42
MSC: 35K90
MSC: 37D10
MSC: 37L25
idZBL: Zbl 1072.37053
idMR: MR1822817
.
Date available: 2008-06-06T22:27:13Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107762
.
Reference: 1. P. Constantin C. Foias B. Nicolaenko, and R. Temam: Nouveaux resultats sur les variétés inertielles pour les équations différentielles dissipatives.(New results on the inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 302 (1986), 375–378. MR 0838393
Reference: 2. P. Constantin C. Foias B. Nicolaenko, and R. Temam: Integral manifolds and inertial manifolds for dissipative partial differential equations.Applied Mathematical Sciences, vol. 70, Springer, 1989. MR 0966192
Reference: 3. C. Foias B. Nicolaenko G.R. Sell, and R. Temam: Variétés inertielles pour l’équation de Kuramoto-Sivashinsky.(Inertial manifolds for the Kuramoto-Sivashinsky equation), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 285–288. MR 0803219
Reference: 4. C. Foias G.R. Sell, and R. Temam: Variétés inertielles des équations différentielles dissipatives.(Inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 139–141. MR 0801946
Reference: 5. C. Foias G.R. Sell, and R. Temam: Inertial manifolds for nonlinear evolutionary equations.J. of Differential Equations 73 (1988), 309–353. MR 0943945
Reference: 6. C. Foias G.R. Sell, and E.S. Titi: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations.J. of Dynamics and Differential Equations 1 (1989), no. 2, 199–244. MR 1010966
Reference: 7. D. Henry: Geometric theory of semilinear parabolic equations.Lecture Notes in Mathematics, vol. 850, Springer, 1981. Zbl 0456.35001, MR 0610244
Reference: 8. N. Koksch: A comparison principle approach to the existence and smootheness of integral manifolds.Habilitation, Fak. Mathematik und Naturwissenschaften der TU Dresden, 1999.
Reference: 9. M. Miklavčič: Applied functional analysis and partial differential equations.World Scientific, Singnapur, New Jersey, London, Hong Kong, 1998. MR 1784426
Reference: 10. H. Ninomiya: Some remarks on inertial manifolds.J. Math. Kyoto Univ. 32 (1992), no. 4, 667–688. Zbl 0815.35037, MR 1194108
Reference: 11. J.C. Robinson: Inertial manifolds and the cone condition.Dyn. Syst. Appl. 2 (1993), no. 3, 311–330. Zbl 0787.34036, MR 1233854
Reference: 12. J.C. Robinson: The asymptotic completeness of inertial manifolds.Nonlinearity 9 (1996), 1325–1340. Zbl 0898.35016, MR 1416479
Reference: 13. A.V. Romanov: Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations.Russ. Acad. Sci., Izv., Math. 43 (1994), no. 1, 31–47. MR 1243350
Reference: 14. R. Temam: Infinite-dimensional dynamical systems in mechanics and physics.2nd ed., Applied Mathematical Sciences, vol. 68, Springer, New York, 1997. MR 1441312
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_15.pdf 248.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo