Previous |  Up |  Next

Article

Title: On projectable objects on fibred manifolds (English)
Author: Cruceanu, Vasile
Author: Popescu, Marcela
Author: Popescu, Paul
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 3
Year: 2001
Pages: 185-206
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to study the projectable and $N$-projectable objects (tensors, derivations and linear connections) on the total space $E$ of a fibred manifold $\xi $, where $N$ is a normalization of $\xi $. (English)
Keyword: fibred manifold
Keyword: projectable objects
Keyword: $d$-tensor fields
MSC: 53B40
MSC: 53C07
MSC: 53C60
idZBL: Zbl 1090.53503
idMR: MR1860183
.
Date available: 2008-06-06T22:28:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107798
.
Reference: [1] Ako M.: Fibred spaces with almost complex structure.Kodai Math. Sem. Rep., 29 (1972), 482–505. MR 0353192
Reference: [2] Bejancu A.: Finsler Geometry and Applications.Math. and its appl., Chichester, 1988.
Reference: [3] Cruceanu V.: Sur la structure presque produit assiciée à une connection sur un espace fibré.An. St. Univ. “Al.I.Cuza" Iassy, XV (1969), 159–167. MR 0256294
Reference: [4] Cruceanu V.,: Connections compatibles avec certaines structures sur un fibré vectoriel banachique.Czechoslovak Math. J., 24 (1974), 126–142. MR 0353356
Reference: [5] Cruceanu V.: A New definition for certaines lifts on a Vector Bundle.An. St. Univ. ”Al.I.Cuza” Iassy, 42 (1996), 59–72. MR 1458921
Reference: [6] Gray A.: Pseudo-Riemannian almost products manifolds and submersions.J.Math.and Mech. 16 (1967), 715–738. MR 0205184
Reference: [7] Grifone J.: Structures presque-tangente et connexions.I, II, Ann. Inst. Fourier, 22 (1972), 287–334, 291–338. MR 0336636
Reference: [8] Ishihara S., Konishi M.: Differential Geometry of Fibred Spaces.Publ. Study Group of Geometry, 8 (1973), 1–200. Zbl 0337.53001, MR 0405275
Reference: [9] Mangiarotti L., Modugno M.: Connections and Differential Calculus on Fibred Manifolds.Istituto de Mat. Appl. “G. Sansone", Italy, 1989, 147 pp. Zbl 0841.53023
Reference: [10] Miron R. : The geometry of Higher-Order Lagrange Spaces.Aplications to Mechanics and Physics. Kluwer Acad. Publ. FTPH (1996). MR 1437362
Reference: [11] Miron R., Anastasiei M.: The Geometry of Lagrange Spaces. Theory and Applications.Kluwer Acad. Publ. 59 (1994). Zbl 0831.53001, MR 1281613
Reference: [12] Popescu M., Popescu P.: d-Linear Connections on Fibred Manifolds.An. Univ. Craiova, Ser. mat., XXIII (1996), 52–59. Zbl 1053.53513, MR 1654908
Reference: [13] Popescu P.: On the geometry of R-tangent spaces.Rev. Roum. Math. Pures Appl., 37(1992), 8, 727–733. MR 1188626
Reference: [14] Yano K., Ishihara S.: Differential Geometry of Fibred Spaces.Kodai Math. Sem. Rep., 19 (1967), 257–288. Zbl 0153.51204, MR 0224027
.

Files

Files Size Format View
ArchMathRetro_037-2001-3_3.pdf 415.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo