Title:
|
On an antiperiodic type boundary value problem for first order linear functional differential equations (English) |
Author:
|
Hakl, R. |
Author:
|
Lomtatidze, A. |
Author:
|
Šremr, J. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
38 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
149-160 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Nonimprovable, in a certain sense, sufficient conditions for the unique solvability of the boundary value problem \[ u^{\prime }(t)=\ell (u)(t)+q(t),\qquad u(a)+\lambda u(b)=c \] are established, where $\ell :C([a,b];R)\rightarrow L([a,b];R)$ is a linear bounded operator, $q\in L([a,b];R)$, $\lambda \in R_+$, and $c\in R$. The question on the dimension of the solution space of the homogeneous problem \[ u^{\prime }(t)=\ell (u)(t),\qquad u(a)+\lambda u(b)=0 \] is discussed as well. (English) |
Keyword:
|
linear functional differential equation |
Keyword:
|
antiperiodic type BVP |
Keyword:
|
solvability and unique solvability |
MSC:
|
34K13 |
idZBL:
|
Zbl 1087.34042 |
idMR:
|
MR1909595 |
. |
Date available:
|
2008-06-06T22:30:13Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107828 |
. |
Reference:
|
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the theory of functional differential equations.Nauka, Moscow, 1991, in Russian. Zbl 0725.34071, MR 1144998 |
Reference:
|
[2] Azbelev N. V., Rakhmatullina L. F.: Theory of linear abstract functional differential equations and aplications.Mem. Differential Equations Math. Phys., 8 (1996), 1–102. MR 1432626 |
Reference:
|
[3] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations.Mem. Differential Equations Math. Phys. 20 (2000), 133–135. Zbl 0968.34049, MR 1789344 |
Reference:
|
[4] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Czechoslovak Math. J., to appear. Zbl 1023.34055, MR 1923257 |
Reference:
|
[5] Bravyi E., Hakl R., Lomtatidze A.: On Cauchy problem for the first order nonlinear functional differential equations of non–Volterra’s type.Czechoslovak Math. J., to appear. MR 1940049 |
Reference:
|
[6] Bravyi E., Lomtatidze A., Půža B.: A note on the theorem on differential inequalities.Georgian Math. J. 7 4 (2000), 627–631. Zbl 1009.34057, MR 1811918 |
Reference:
|
[7] Hakl R.: On some boundary value problems for systems of linear functional differential equations.Electron. J. Qual. Theory Differ. Equ. 10 (1999), 1–16. Zbl 0948.34040, MR 1711999 |
Reference:
|
[8] Hakl R., Kiguradze I., Půža B.: Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities.Georgian Math. J. 7 3 (2000), 489–512. MR 1797786 |
Reference:
|
[9] Hakl R., Lomtatidze A.: A note on the Cauchy problem for first order linear differential equations with a deviating argument.Arch. Math. (Brno) 38 1 (2002), 61–71. Zbl 1087.34043, MR 1899569 |
Reference:
|
[10] Hakl R., Lomtatidze A., Půža B.: On a periodic boundary value problem for the first order scalar functional differential equation.J. Math. Anal. Appl., submitted. |
Reference:
|
[11] Hakl R., Lomtatidze A., Půža B.: On periodic solutions of first order linear functional differential equations.Nonlinear Anal. 49 7 (2002), 929–945. Zbl 1008.34062, MR 1895537 |
Reference:
|
[12] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Math. Bohem., to appear. Zbl 1017.34065, MR 1942637 |
Reference:
|
[13] Hakl R., Lomtatidze A., Šremr J. : On an antiperiodic type boundary value problem for first order nonlinear functional differential equations of non–Volterra’s type.Differential Integral Equations, submitted. Zbl 1086.34536 |
Reference:
|
[14] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order linear functional differential equations.Nonlinear Oscillations, submitted. |
Reference:
|
[15] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order nonlinear functional differential equations.Nonlinear Anal., to appear. Zbl 1022.34058 |
Reference:
|
[16] Hale J.: Theory of functional differential equations.Springer–Verlag, New York-Heidelberg-Berlin, 1977. Zbl 0352.34001, MR 0508721 |
Reference:
|
[17] Kiguradze I.: On periodic solutions of first order nonlinear differential equations with deviating arguments.Mem. Differential Equations Math. Phys. 10 (1997), 134–137. Zbl 0927.34053 |
Reference:
|
[18] Kiguradze I.: Initial and boundary value problems for systems of ordinary differential equations I.Metsniereba, Tbilisi, 1997, in Russian. MR 1484729 |
Reference:
|
[19] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47 2 (1997), 341–373. Zbl 0930.34047, MR 1452425 |
Reference:
|
[20] Kiguradze I., Půža B.: On periodic solutions of systems of linear functional differential equations.Arch. Math. (Brno) 33 3 (1997), 197–212. MR 1478773 |
Reference:
|
[21] Kiguradze I., Půža B.: Conti–Opial type theorems for systems of functional differential equations.Differentsial’nye Uravneniya 33 2 (1997), 185–194, in Russian. MR 1609904 |
Reference:
|
[22] Kiguradze I., Půža B.: On boundary value problems for functional differential equations.Mem. Differential Equations Math. Phys. 12 (1997), 106–113. Zbl 0909.34054, MR 1636865 |
Reference:
|
[23] Kiguradze I., Půža B.: On periodic solutions of nonlinear functional differential equations.Georgian Math. J. 6 1 (1999), 47–66. MR 1672994 |
Reference:
|
[24] Kiguradze I., Půža B.: On periodic solutions of systems of differential equations with deviating arguments.Nonlinear Anal. 42 2 (2000), 229–242. MR 1773980 |
Reference:
|
[25] Kolmanovskii V., Myshkis A.: Introduction to the theory and applications of functional differential equations.Kluwer Academic Publishers, 1999. Zbl 0917.34001, MR 1680144 |
Reference:
|
[26] Mawhin J.: Periodic solutions of nonlinear functional differential equations.J. Differential Equations 10 (1971), 240–261. Zbl 0223.34055, MR 0294823 |
Reference:
|
[27] Schwabik S., Tvrdý M., Vejvoda O.: Differential and integral equations: boundary value problems and adjoints.Academia, Praha, 1979. Zbl 0417.45001, MR 0542283 |
. |