Previous |  Up |  Next

Article

Title: On an antiperiodic type boundary value problem for first order linear functional differential equations (English)
Author: Hakl, R.
Author: Lomtatidze, A.
Author: Šremr, J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 2
Year: 2002
Pages: 149-160
Summary lang: English
.
Category: math
.
Summary: Nonimprovable, in a certain sense, sufficient conditions for the unique solvability of the boundary value problem \[ u^{\prime }(t)=\ell (u)(t)+q(t),\qquad u(a)+\lambda u(b)=c \] are established, where $\ell :C([a,b];R)\rightarrow L([a,b];R)$ is a linear bounded operator, $q\in L([a,b];R)$, $\lambda \in R_+$, and $c\in R$. The question on the dimension of the solution space of the homogeneous problem \[ u^{\prime }(t)=\ell (u)(t),\qquad u(a)+\lambda u(b)=0 \] is discussed as well. (English)
Keyword: linear functional differential equation
Keyword: antiperiodic type BVP
Keyword: solvability and unique solvability
MSC: 34K13
idZBL: Zbl 1087.34042
idMR: MR1909595
.
Date available: 2008-06-06T22:30:13Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107828
.
Reference: [1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the theory of functional differential equations.Nauka, Moscow, 1991, in Russian. Zbl 0725.34071, MR 1144998
Reference: [2] Azbelev N. V., Rakhmatullina L. F.: Theory of linear abstract functional differential equations and aplications.Mem. Differential Equations Math. Phys., 8 (1996), 1–102. MR 1432626
Reference: [3] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations.Mem. Differential Equations Math. Phys. 20 (2000), 133–135. Zbl 0968.34049, MR 1789344
Reference: [4] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Czechoslovak Math. J., to appear. Zbl 1023.34055, MR 1923257
Reference: [5] Bravyi E., Hakl R., Lomtatidze A.: On Cauchy problem for the first order nonlinear functional differential equations of non–Volterra’s type.Czechoslovak Math. J., to appear. MR 1940049
Reference: [6] Bravyi E., Lomtatidze A., Půža B.: A note on the theorem on differential inequalities.Georgian Math. J. 7 4 (2000), 627–631. Zbl 1009.34057, MR 1811918
Reference: [7] Hakl R.: On some boundary value problems for systems of linear functional differential equations.Electron. J. Qual. Theory Differ. Equ. 10 (1999), 1–16. Zbl 0948.34040, MR 1711999
Reference: [8] Hakl R., Kiguradze I., Půža B.: Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities.Georgian Math. J. 7 3 (2000), 489–512. MR 1797786
Reference: [9] Hakl R., Lomtatidze A.: A note on the Cauchy problem for first order linear differential equations with a deviating argument.Arch. Math. (Brno) 38 1 (2002), 61–71. Zbl 1087.34043, MR 1899569
Reference: [10] Hakl R., Lomtatidze A., Půža B.: On a periodic boundary value problem for the first order scalar functional differential equation.J. Math. Anal. Appl., submitted.
Reference: [11] Hakl R., Lomtatidze A., Půža B.: On periodic solutions of first order linear functional differential equations.Nonlinear Anal. 49 7 (2002), 929–945. Zbl 1008.34062, MR 1895537
Reference: [12] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Math. Bohem., to appear. Zbl 1017.34065, MR 1942637
Reference: [13] Hakl R., Lomtatidze A., Šremr J. : On an antiperiodic type boundary value problem for first order nonlinear functional differential equations of non–Volterra’s type.Differential Integral Equations, submitted. Zbl 1086.34536
Reference: [14] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order linear functional differential equations.Nonlinear Oscillations, submitted.
Reference: [15] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order nonlinear functional differential equations.Nonlinear Anal., to appear. Zbl 1022.34058
Reference: [16] Hale J.: Theory of functional differential equations.Springer–Verlag, New York-Heidelberg-Berlin, 1977. Zbl 0352.34001, MR 0508721
Reference: [17] Kiguradze I.: On periodic solutions of first order nonlinear differential equations with deviating arguments.Mem. Differential Equations Math. Phys. 10 (1997), 134–137. Zbl 0927.34053
Reference: [18] Kiguradze I.: Initial and boundary value problems for systems of ordinary differential equations I.Metsniereba, Tbilisi, 1997, in Russian. MR 1484729
Reference: [19] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47 2 (1997), 341–373. Zbl 0930.34047, MR 1452425
Reference: [20] Kiguradze I., Půža B.: On periodic solutions of systems of linear functional differential equations.Arch. Math. (Brno) 33 3 (1997), 197–212. MR 1478773
Reference: [21] Kiguradze I., Půža B.: Conti–Opial type theorems for systems of functional differential equations.Differentsial’nye Uravneniya 33 2 (1997), 185–194, in Russian. MR 1609904
Reference: [22] Kiguradze I., Půža B.: On boundary value problems for functional differential equations.Mem. Differential Equations Math. Phys. 12 (1997), 106–113. Zbl 0909.34054, MR 1636865
Reference: [23] Kiguradze I., Půža B.: On periodic solutions of nonlinear functional differential equations.Georgian Math. J. 6 1 (1999), 47–66. MR 1672994
Reference: [24] Kiguradze I., Půža B.: On periodic solutions of systems of differential equations with deviating arguments.Nonlinear Anal. 42 2 (2000), 229–242. MR 1773980
Reference: [25] Kolmanovskii V., Myshkis A.: Introduction to the theory and applications of functional differential equations.Kluwer Academic Publishers, 1999. Zbl 0917.34001, MR 1680144
Reference: [26] Mawhin J.: Periodic solutions of nonlinear functional differential equations.J. Differential Equations 10 (1971), 240–261. Zbl 0223.34055, MR 0294823
Reference: [27] Schwabik S., Tvrdý M., Vejvoda O.: Differential and integral equations: boundary value problems and adjoints.Academia, Praha, 1979. Zbl 0417.45001, MR 0542283
.

Files

Files Size Format View
ArchMathRetro_038-2002-2_6.pdf 338.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo