Previous |  Up |  Next

Article

Title: Self-correcting iterative methods for computing ${2}$-inverses (English)
Author: Stanimirović, Predrag S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 1
Year: 2003
Pages: 27-36
Summary lang: English
.
Category: math
.
Summary: In this paper we construct a few iterative processes for computing $\lbrace 2\rbrace $-inverses of a linear bounded operator. These algorithms are extensions of the corresponding algorithms introduced in [11] and a method from [8]. A few error estimates are derived. (English)
Keyword: generalized inverses
Keyword: Moore–Penrose inverse
Keyword: error matrix
MSC: 15A09
MSC: 15A24
MSC: 65F20
idZBL: Zbl 1122.15301
idMR: MR1982209
.
Date available: 2008-06-06T22:41:08Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107851
.
Reference: [1] Altman, M.: An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space.Pacific J. Math. 10 (1960), 1107–113. Zbl 0095.09401, MR 0126165
Reference: [2] Ben-Israel, A.: An iterative method for computing the generalized inverse of an arbitrary matrix.Math. Comp. 19 (1965), 452–455. Zbl 0136.12703, MR 0179915
Reference: [3] Ben-Israel, A.: A note on an iterative method for generalized inversion of matrices.Math. Comp. 20 (1966), 439–440. Zbl 0142.11603
Reference: [4] Ben-Israel, A. and Cohen, D.: On iterative computation of generalized inverses and associated projectors.SIAM J. Numer. Anal. 3 (1966), 410–419. MR 0203917
Reference: [5] Chen, Y.: Finite algorithms for $(2)$-generalized inverse $A_{T,S}^{(2)}$.Linear and Multilinear Algebra 40 (1995), 61–68. MR 1374491
Reference: [6] Garnett, J., Ben-Israel, A. and Yau, S. S.: A hyperpower iterative method for computing matrix products involving the generalized inverse.SIAM J. Numer. Anal. 8 (1971), 104–109. MR 0281330
Reference: [7] Herzberger, J.: Using error-bounds hyperpower methods to calculate inclusions for the inverse of a matrix.BIT 30 (1990), 508–515. MR 1059311
Reference: [8] Pan, V. and Schreiber, R.: An improved Newton iteration for the generalized inverse of a matrix, with applications.SIAM. J. Sci. Stat. Comput. 12 (1991), 1109–1130. MR 1114976
Reference: [9] Petryshyn, W. V.: On the inversion of matrices and linear operators.Proc. Amer. Math. Soc. 16 (1965), 893–901. Zbl 0151.19301, MR 0182121
Reference: [10] Petryshyn, W. V.: On generalized inverses and on the uniform convergence of $(I-\beta K)^n$ with application to iterative methods.J. Math. Anal. Appl. 18 (1967), 417–439. MR 0208381
Reference: [11] Pierce, W. H.: A self-correcting matrix iteration for the Moore-Penrose inverse.Linear Algebra Appl. 244 (1996), 357–363. MR 1403289
Reference: [12] Schulz, G.: Iterative Berechnung der reziproken Matrix.Z. Angew. Math. Mech. 13 (1933), 57–59.
Reference: [13] Söderström, T. and Stewart, G. W.: On the numerical properties of an iterative method for computing the Moore-Penrose generalized inverse.SIAM J. Numer. Anal. 11 (1974), 61–74. MR 0341843
Reference: [14] Stanimirović, P. S. and Djordjević, D. S.: Universal iterative methods for computing generalized inverses.Acta Math. Hungar. 79(3) (1998), 253–268. MR 1616062
Reference: [15] Stanimirović, P. S.: Block representation of $\lbrace 2\rbrace $, $\lbrace 1,2\rbrace $ inverses and the Drazin inverse.Indian J. Pure Appl. Math. 29 (1998), 1159–1176. MR 1672776
Reference: [16] Tanabe, K.: Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method.Linear Algebra Appl. 10 (1975), 163–175. Zbl 0327.15012, MR 0416001
Reference: [17] Wang, G.: The representations of the generalized inverses $(A\otimes B)_{T,S}^{(1,2)}$ and $(A\otimes B)_{T,S}^{(2)}$ and some applications.J. Shanghai Univ. (Natural Sciences) 24 (1995), 1–6.
Reference: [18] Zielke, G.: Iterative refinement of generalized matrix inverses now practicable.SIGNUM Newsletter 13.4 (1978), 9–10.
Reference: [19] Zielke, G.: A survey of generalized matrix inverses.Computational Mathematics, Banach center Publications 13 (1984), 499–526. Zbl 0572.65026, MR 0798117
Reference: [20] Zlobec, S.: On computing the generalized inverse of a linear operator.Glasnik Matematički 2(22) No 2 (1967), 265–271. Zbl 0149.35101, MR 0234967
.

Files

Files Size Format View
ArchMathRetro_039-2003-1_3.pdf 227.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo