Previous |  Up |  Next

Article

Title: On the powerful part of $n\sp 2+1$ (English)
Author: Puchta, Jan-Christoph
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 3
Year: 2003
Pages: 187-189
Summary lang: English
.
Category: math
.
Summary: We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim. (English)
MSC: 11D09
MSC: 11D25
MSC: 11N25
idZBL: Zbl 1122.11311
idMR: MR2010719
.
Date available: 2008-06-06T22:41:43Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107865
.
Reference: [1] Evertse J.-H., Silverman J. H.: Uniform bounds for the number of solutions to $Y^n=f(X)$.Math. Proc. Camb. Philos. Soc. 100 (1986), 237–248. MR 0848850
Reference: [2] Heath-Brown D. R.: Review 651.10012.Zentralblatt Mathematik 651, 41 (1989) MR 1441325
Reference: [3] Mardjanichvili C.: Estimation d’une somme arithmetique.Dokl. Acad. Sci. SSSR 22 (1939), 387–389. Zbl 0021.20802
Reference: [4] Ribenboim P.: Remarks on exponential congruences and powerful numbers.J. Number Theory 29 (1988), 251–263. Zbl 0651.10012, MR 0955951
.

Files

Files Size Format View
ArchMathRetro_039-2003-3_4.pdf 177.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo