Previous |  Up |  Next

Article

Title: Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments (English)
Author: Koplatadze, R.
Author: Partsvania, N. L.
Author: Stavroulakis, I. P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 3
Year: 2003
Pages: 213-232
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions are established for the oscillation of proper solutions of the system \begin{align} u_1^{\prime }(t) & =p(t)u_2(\sigma (t))\,, \\ u_2^{\prime }(t) & =-q(t)u_1(\tau (t))\,, \end{align} where $p,\,q: R_{+}\rightarrow R_{+}$ are locally summable functions, while $\tau $ and $\sigma : R_{+}\rightarrow R_{+}$ are continuous and continuously differentiable functions, respectively, and $\lim \limits _{t\rightarrow +\infty } \tau (t)=+\infty $, $\lim \limits _{t\rightarrow +\infty } \sigma (t)=+\infty $. (English)
Keyword: two-dimensional differential system
Keyword: proper solution
Keyword: oscillatory system
MSC: 34K06
MSC: 34K11
MSC: 34K25
idZBL: Zbl 1116.34331
idMR: MR2010723
.
Date available: 2008-06-06T22:41:55Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107869
.
Reference: [1] Chantladze T., Kandelaki N., Lomtatidze, A : Oscillation and nonoscillation criteria for a second order linear equation.Georgian Math. J. 6 (1999), No. 5, 401–414. Zbl 0944.34025, MR 1692963
Reference: [2] Chantladze T., Kandelaki N., Lomtatidze A.: On oscillation and nonoscillation of second order half-linear equation.Georgian Math. J. 7 (2000), No. 1, 329–346. MR 1779555
Reference: [3] Coppell W. A.: Stability and asymptotic behaviour of differential equations.Heat and Co., Boston, 1965.
Reference: [4] Hille E.: Non-oscillation theorems.Trans. Amer. Math. Soc.64 (1948), 234–252. Zbl 0031.35402, MR 0027925
Reference: [5] Koplatadze R. G.: Criteria for the oscillation of solutions of second order differential inequalities and equations with a retarded argument.(Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 17 (1986), 104–121. MR 0853276
Reference: [6] Koplatadze R.: On oscillatory properties of solutions of functional differential equations.Mem. Differential Equations Math. Phys. 3 (1994), 1–179. Zbl 0843.34070, MR 1375838
Reference: [7] Koplatadze R., Kvinikadze G., Stavroulakis I. P.: Oscillation of second order linear delay differential equations.Funct. Differ. Equ. 7 (2000), No. 1–2, 121–145. Zbl 1057.34077, MR 1941863
Reference: [8] Koplatadze R., Partsvania N.: Oscillatory properties of solutions of two-dimensional differential systems with deviated arguments.(Russian) Differentsial’nye Uravneniya 33 (1997), No. 10, 1312–1320; translation in Differential Equations 33 (1997), No. 10, 1318–1326 (1998). MR 1668129
Reference: [9] Lomtatidze A.: Oscillation and nonoscillation criteria for second order linear differential equation.Georgian Math. J. 4 (1997), No. 2, 129–138. MR 1439591
Reference: [10] Lomtatidze A., Partsvania N.: Oscillation and nonoscillation criteria for two-dimensional systems of first order linear ordinary differential equations.Georgian Math. J. 6 (1999), No. 3, 285–298. Zbl 0930.34025, MR 1679448
Reference: [11] Mirzov J. D.: Asymptotic behavior of solutions of systems of nonlinear non-autonomous ordinary differential equations.(Russian) Maikop 1993.
Reference: [12] Nehari Z.: Oscillation criteria for second-order linear differential equations.Trans. Amer. Math. Soc. 85 (1957), 428–445. Zbl 0078.07602, MR 0087816
Reference: [13] Partsvania N.: On oscillation of solutions of second order systems of deviated differential equations.Georgian Math. J. 3 (1996), No. 6, 571–582. Zbl 0868.34054, MR 1419836
.

Files

Files Size Format View
ArchMathRetro_039-2003-3_8.pdf 261.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo