Previous |  Up |  Next

Article

Title: Solvability of a periodic type boundary value problem for first order scalar functional differential equations (English)
Author: Hakl, Robert
Author: Lomtatidze, Alexander
Author: Šremr, Jiří
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 1
Year: 2004
Pages: 89-109
Summary lang: English
.
Category: math
.
Summary: Nonimprovable sufficient conditions for the solvability and unique solvability of the problem \[ u^{\prime }(t)=F(u)(t)\,,\qquad u(a)-\lambda u(b)=h(u) \] are established, where $F:\rightarrow $ is a continuous operator satisfying the Carathèodory conditions, $h:\rightarrow R$ is a continuous functional, and $\lambda \in $. (English)
Keyword: functional differential equation
Keyword: periodic type boundary value problem
Keyword: solvability
Keyword: unique solvability
idZBL: Zbl 1117.34061
idMR: MR2054875
.
Date available: 2008-06-06T22:43:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107893
.
Reference: [1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the theory of functional differential equations.Nauka, Moscow, 1991 (In Russian). Zbl 0725.34071, MR 1144998
Reference: [2] Azbelev, N V., Rakhmatullina L. F.: Theory of linear abstract functional differential equations and applications.Mem. Differential Equations Math. Phys. 8 (1996), 1–102. Zbl 0870.34067, MR 1432626
Reference: [3] Bernfeld S. R., Lakshmikantham V.: An introduction to nonlinear boundary value problems.Academic Press, Inc., New York and London, 1974. Zbl 0286.34018, MR 0445048
Reference: [4] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations.Mem. Differential Equations Math. Phys. 20 (2000), 133–135. Zbl 0968.34049, MR 1789344
Reference: [5] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Czechoslovak Math. J. 52 (2002), No. 3, 513–530. Zbl 1023.34055, MR 1923257
Reference: [6] Bravyi E., Hakl R., Lomtatidze A.: On Cauchy problem for the first order nonlinear functional differential equations of non–Volterra’s type.Czechoslovak Math. J. 52 (2002), No. 4, 673–690. MR 1940049
Reference: [7] Bravyi E., Lomtatidze A., Půža B.: A note on the theorem on differential inequalities.Georgian Math. J. 7 (2000), No. 4, 627–631. Zbl 1009.34057, MR 1811918
Reference: [8] Coddington E. A., Levinson N.: Theory of ordinary differential equations.Mc–Graw–Hill Book Company, Inc., New York–Toronto–London, 1955. Zbl 0064.33002, MR 0069338
Reference: [9] Gelashvili S. M.: On a boundary value problem for systems of functional differential equations.Arch. Math. (Brno) 20 (1964), 157–168 (In Russian). MR 0784867
Reference: [10] Gelashvili S., Kiguradze I.: On multi-point boundary value problems for systems of functional differential and difference equations.Mem. Differential Equations Math. Phys. 5 (1995), 1–113. MR 1415806
Reference: [11] Hakl R.: On some boundary value problems for systems of linear functional differential equations.Electron. J. Qual. Theory Differ. Equ. (1999), No. 10, 1–16. Zbl 0948.34040, MR 1711999
Reference: [12] Hakl R., Kiguradze I., Půža B.: Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities.Georgian Math. J. 7 (2000), No. 3, 489–512. MR 1797786
Reference: [13] Hakl R., Lomtatidze A.: A note on the Cauchy problem for first order linear differential equations with a deviating argument.Arch. Math. (Brno) 38 (2002), No. 1, 61–71. Zbl 1087.34043, MR 1899569
Reference: [14] Hakl R., Lomtatidze A., Půža B.: On nonnegative solutions of first order scalar functional differential equations.Mem. Differential Equations Math. Phys. 23 (2001), 51–84. Zbl 1009.34058, MR 1873258
Reference: [15] Hakl R., Lomtatidze A., Půža B.: On a boundary value problem for first order scalar functional differential equations.Nonlinear Anal. 53 (2003), Nos. 3–4, 391–405. Zbl 1024.34056, MR 1964333
Reference: [16] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Math. Bohem. 127 (2002), No. 4, 509–524. Zbl 1017.34065, MR 1942637
Reference: [17] Hakl R., Lomtatidze A., Šremr J.: On nonnegative solutions of a periodic type boundary value problems for first order scalar functional differential equations.Funct. Differ. Equ., to appear. MR 2095493
Reference: [18] Hakl R., Lomtatidze A., Šremr J.: On constant sign solutions of a periodic type boundary value problems for first order scalar functional differential equations.Mem. Differential Equations Math. Phys. 26 (2002), 65–90. MR 1929099
Reference: [19] Hale J.: Theory of functional differential equations.Springer–Verlag, New York–Heidelberg–Berlin, 1977. Zbl 0352.34001, MR 0508721
Reference: [20] Hartman P.: Ordinary differential equations.John Wiley & Sons, Inc., New York–London–Sydney, 1964. Zbl 0125.32102, MR 0171038
Reference: [21] Kiguradze I.: Some singular boundary value problems for ordinary differential equations.Tbilisi Univ. Press, Tbilisi, 1975 (In Russian). MR 0499402
Reference: [22] Kiguradze I.: Boundary value problems for systems of ordinary differential equations.Current problems in mathematics. Newest results, Vol. 30, 3–103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vses. Inst. Nauchn. i Tekh. Inform., Moscow (1987) (In Russian). Zbl 0782.34025, MR 0925829
Reference: [23] Kiguradze I.: Initial and boundary value problems for systems of ordinary differential equations I.Metsniereba, Tbilisi, 1997 (In Russian). MR 1484729
Reference: [24] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47 (1997), No. 2, 341–373. Zbl 0930.34047, MR 1452425
Reference: [25] Kiguradze I., Půža B.: Conti–Opial type theorems for systems of functional differential equations.Differ. Uravn. 33 (1997), No. 2, 185–194 (In Russian). MR 1609904
Reference: [26] Kiguradze I., Půža B.: On boundary value problems for functional differential equations.Mem. Differential Equations Math. Phys. 12 (1997), 106–113. Zbl 0909.34054, MR 1636865
Reference: [27] Kiguradze I., Půža B.: On the solvability of nonlinear boundary value problems for functional differential equations.Georgian Math. J. 5 (1998), No. 3, 251–262. Zbl 0909.34057, MR 1618364
Reference: [28] Kolmanovskii V., Myshkis A.: Introduction to the theory and applications of functional differential equations.Kluwer Academic Publishers 1999. Zbl 0917.34001, MR 1680144
Reference: [29] Schwabik Š., Tvrdý M., Vejvoda O.: Differential and integral equations: boundary value problems and adjoints.Academia, Praha 1979. Zbl 0417.45001, MR 0542283
Reference: [30] Tsitskishvili R. A.: Unique solvability and correctness of a linear boundary value problem for functional–differential equations.Rep. Enlarged Sessions Sem. I. N. Vekua Inst. Appl. Math. 5 (1990), No. 3, 195–198 (In Russian).
.

Files

Files Size Format View
ArchMathRetro_040-2004-1_9.pdf 281.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo