Previous |  Up |  Next


higher order; nonlinear; neutral equation; oscillation
In this paper, we investigate a class of higher order neutral functional differential equations, and obtain some new oscillatory criteria of solutions.
[1] Agarwal R.P., Grace S. R., O’Regan D.: Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2001), 601–622. MR 1859327
[2] Bainov D. D, Mishev D. P.: Oscillation Theory for Neutral Differential Equations with Delay. Adam Hilger, Bristol 1991. MR 1147908 | Zbl 0747.34037
[3] Erbe L. H., Kong Q. K., Zhang B. Q.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York 1995. MR 1309905
[4] Ladas G., Sficas Y. D.: Oscillations of higher-order equations. J. Austral. Math. Soc., Ser. B 27 (1986), 502–511. MR 0836222
[5] Grace S. R.: Oscillation of even order nonlinear functional differential equation with deviating arguments. Funkcial. Ekvac. 32 (1989), 265–272. MR 1019434
[6] Grace S. R.: Oscillation theorems of comparison type for neutral nonlinear functional differential equation. Czechoslovak Math. J. 45, 4 (1995), 609–626. MR 1354921
[7] Jaroš J., Kusano T.: Existence of oscillatory solutions for functional differential equations of neutral type. Acta Math. Univ. Comenian. (N.S.) 60, No. 2 (1991), 185–194. MR 1155243
[8] Philos, Ch. G.: A new criterion for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Mat. 29 (1981), 367–370. MR 0640329 | Zbl 0482.34056
Partner of
EuDML logo