Title:
|
Characterizations of Lambek-Carlitz type (English) |
Author:
|
Schwab, Emil Daniel |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
40 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
295-300 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The $q$-analog of the Lambek-Carlitz type characterization of exponential series is also established. (English) |
Keyword:
|
completely multiplicative functions |
Keyword:
|
Möbius categories |
Keyword:
|
exponential series |
MSC:
|
11A25 |
MSC:
|
13F25 |
MSC:
|
18B99 |
idZBL:
|
Zbl 1122.11003 |
idMR:
|
MR2107025 |
. |
Date available:
|
2008-06-06T22:44:01Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107912 |
. |
Reference:
|
[1] Carlitz L.: Problem E 2268.Amer. Math. Monthly 78 (1971), 1140. MR 1536560 |
Reference:
|
[2] Content M., Lemay F., Leroux P.: Catégories de Möbius et fonctorialités: un cadre gènèral pour l’inversion de Möbius.J. Combin. Theory Ser. A 25 (1980), 169–190. Zbl 0449.05004, MR 0563554 |
Reference:
|
[3] Doubilet P., Rota G. C., Stanley R.: On the foundations of combinatorial theory (VI): the idea of generating function.Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267–318. Zbl 0267.05002, MR 0403987 |
Reference:
|
[4] Goldman J., Rota G. C.: On the foundations of combinatorial theory IV: finite-vector spaces and Eulerian generating functions.Stud. Appl. Math. 49 (1970), 239–258. Zbl 0216.01802, MR 0265181 |
Reference:
|
[5] Lambek J.: Arithmetical functions and distributivity.Amer. Math. Monthly 73 (1966), 969–973. Zbl 0152.03105, MR 0202657 |
Reference:
|
[6] Langford E.: Distributivity over the Dirichlet product and complete multiplicative arithmetical functions.Amer. Math. Monthly 80 (1973), 411–414. MR 0314789 |
Reference:
|
[7] Leroux P.: Les catégories de Möbius.Cahiers Topologie Géom. Différentielle Catég. 16 (1975), 280–282. |
Reference:
|
[8] Leroux P.: Catégories triangulaires. Exemples, applications, et problèmes.Rapport de recherche, Université du Québec a Montréal (1980), 72p. |
Reference:
|
[9] Leroux P.: Reduced matrices and $q$-log-concavity properties of $q$-Stirling numbers.J. Combin. Theory Ser. A (1990), 64–84. Zbl 0704.05003, MR 1051779 |
Reference:
|
[10] Schwab E. D.: Multiplicative and additive elements in the ring of formal power series.PU.M.A. 4 (1993), 339–346. Zbl 0806.13010, MR 1283983 |
Reference:
|
[11] Schwab E. D.: Complete multiplicativity and complete additivity in Möbius categories.Ital. J. Pure Appl. Math. 3 (1998), 37–48. Zbl 0955.05007, MR 1769389 |
Reference:
|
[12] Sivaramakrishnan R.: Problem E 2196.Amer. Math. Monthly 77 (1970), 772. |
. |