Previous |  Up |  Next

Article

Title: Characterizations of Lambek-Carlitz type (English)
Author: Schwab, Emil Daniel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 3
Year: 2004
Pages: 295-300
Summary lang: English
.
Category: math
.
Summary: We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The $q$-analog of the Lambek-Carlitz type characterization of exponential series is also established. (English)
Keyword: completely multiplicative functions
Keyword: Möbius categories
Keyword: exponential series
MSC: 11A25
MSC: 13F25
MSC: 18B99
idZBL: Zbl 1122.11003
idMR: MR2107025
.
Date available: 2008-06-06T22:44:01Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107912
.
Reference: [1] Carlitz L.: Problem E 2268.Amer. Math. Monthly 78 (1971), 1140. MR 1536560
Reference: [2] Content M., Lemay F., Leroux P.: Catégories de Möbius et fonctorialités: un cadre gènèral pour l’inversion de Möbius.J. Combin. Theory Ser. A 25 (1980), 169–190. Zbl 0449.05004, MR 0563554
Reference: [3] Doubilet P., Rota G. C., Stanley R.: On the foundations of combinatorial theory (VI): the idea of generating function.Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267–318. Zbl 0267.05002, MR 0403987
Reference: [4] Goldman J., Rota G. C.: On the foundations of combinatorial theory IV: finite-vector spaces and Eulerian generating functions.Stud. Appl. Math. 49 (1970), 239–258. Zbl 0216.01802, MR 0265181
Reference: [5] Lambek J.: Arithmetical functions and distributivity.Amer. Math. Monthly 73 (1966), 969–973. Zbl 0152.03105, MR 0202657
Reference: [6] Langford E.: Distributivity over the Dirichlet product and complete multiplicative arithmetical functions.Amer. Math. Monthly 80 (1973), 411–414. MR 0314789
Reference: [7] Leroux P.: Les catégories de Möbius.Cahiers Topologie Géom. Différentielle Catég. 16 (1975), 280–282.
Reference: [8] Leroux P.: Catégories triangulaires. Exemples, applications, et problèmes.Rapport de recherche, Université du Québec a Montréal (1980), 72p.
Reference: [9] Leroux P.: Reduced matrices and $q$-log-concavity properties of $q$-Stirling numbers.J. Combin. Theory Ser. A (1990), 64–84. Zbl 0704.05003, MR 1051779
Reference: [10] Schwab E. D.: Multiplicative and additive elements in the ring of formal power series.PU.M.A. 4 (1993), 339–346. Zbl 0806.13010, MR 1283983
Reference: [11] Schwab E. D.: Complete multiplicativity and complete additivity in Möbius categories.Ital. J. Pure Appl. Math. 3 (1998), 37–48. Zbl 0955.05007, MR 1769389
Reference: [12] Sivaramakrishnan R.: Problem E 2196.Amer. Math. Monthly 77 (1970), 772.
.

Files

Files Size Format View
ArchMathRetro_040-2004-3_10.pdf 193.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo