Previous |  Up |  Next

Article

Title: The Neumann problem for quasilinear differential equations (English)
Author: Cardinali, Tiziana
Author: Papageorgiou, Nikolaos S.
Author: Servadei, Raffaella
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 4
Year: 2004
Pages: 321-333
Summary lang: English
.
Category: math
.
Summary: In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^{^{\prime }}(t) \vert ^{p-2}x^{^{\prime }}(t))^{^{\prime }} = f(t,x(t),x ^{^{\prime }}(t))$, a.e. on $T$, $x^{^{\prime }}(0) = x^{^{\prime }}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem. (English)
Keyword: upper solution
Keyword: lower solution
Keyword: order interval
Keyword: truncation function
Keyword: penalty function
Keyword: pseudomonotone operator
Keyword: coercive operator
Keyword: Leray-Schauder principle
Keyword: maximal solution
Keyword: minimal solution
MSC: 34B15
MSC: 35J25
MSC: 35J60
MSC: 35J65
idZBL: Zbl 1122.35030
idMR: MR2129954
.
Date available: 2008-06-06T22:44:10Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107916
.
Reference: [1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal. 10 (1986), 1083–1103. MR 0857742
Reference: [2] Brézis H.: Analyse functionelle: Théorie et applications.Masson, Paris 1983. MR 0697382
Reference: [3] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(\vert u^{^{\prime }}(t) \vert ^{p-2}u^{^{\prime }}(t))^{^{\prime }} + f(t,u(t)) = 0, u(0)=u(T)=0, p>1)$.J. Differential Equations 80 (1989), 1–13. MR 1003248
Reference: [4] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator.Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. MR 0928322
Reference: [5] Dunford N., Schwartz J. T.: Linear operators. Part I: General theory.Interscience Publishers, New York 1958–1971. MR 1009162
Reference: [6] Gao W., Wang J.: A nonlinear second order periodic boundary value problem with Carathéodory functions.Ann. Polon. Math. LXVII. 3 (1995), 283–291. MR 1356797
Reference: [7] Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order.Springer-Verlag, Berlin 1983. Zbl 0562.35001, MR 0737190
Reference: [8] Dugundji J., Granas A.: Fixed point theory, Vol. I.Monogr. Mat. PWN, Warsaw 1992.
Reference: [9] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations.Differential Integral Equations 6, No. 3 (1993), 705–719. Zbl 0784.34018, MR 1202567
Reference: [10] Halidias N., Papageorgiou N. S.: Existence of solutions for nonlinear parabolic problems.Arch. Math. (Brno) 35 (1999), 255–274. Zbl 1046.35054, MR 1725842
Reference: [11] Hu S., Papageorgiou N. S.: Handbook of multivalued analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands 1997. Zbl 0887.47001, MR 1485775
Reference: [12] Marcus M., Mizel V. J.: Absolute continuity on tracks and mapping of Sobolev spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765
Reference: [13] O’Regan D.: Some General existence principles and results for $(\phi (y^{^{\prime }}))= qf(t,y,y^{^{\prime }}), 0<t<1^{*}$.SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. MR 1215430
Reference: [14] Pascali D., Sburlan S.: Nonlinear mapping of monotone type.Editura Academiei, Bucuresti, Romania 1978. MR 0531036
Reference: [15] Peressini A. L.: Ordered topological vector spaces.Harper & Row, New York, Evanstone, London 1967. Zbl 0169.14801, MR 0227731
Reference: [16] Wang J., Jiang D.: A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions.J. Math. Anal. Appl. 211 (1997), 223–232. Zbl 0880.34019, MR 1460168
Reference: [17] Zeidler E.: Nonlinear functional analysis and its applications II.Springer-Verlag, New York 1990. Zbl 0684.47029, MR 0816732
.

Files

Files Size Format View
ArchMathRetro_040-2004-4_1.pdf 247.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo