Previous |  Up |  Next

Article

Title: A note on rapid convergence of approximate solutions for second order periodic boundary value problems (English)
Author: Khan, Rahmat A.
Author: Ahmad, Bashir
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 2
Year: 2005
Pages: 135-143
Summary lang: English
.
Category: math
.
Summary: In this paper, we develop a generalized quasilinearization technique for a nonlinear second order periodic boundary value problem and obtain a sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Then we improve the convergence of the sequence of approximate solutions by establishing the convergence of order $k$ $(k\ge 2)$. (English)
Keyword: generalized quasilinearization
Keyword: periodic boundary value problems
Keyword: rapid convergence
MSC: 34A45
MSC: 34B15
MSC: 34C25
idZBL: Zbl 1117.34018
idMR: MR2164662
.
Date available: 2008-06-06T22:45:29Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107943
.
Reference: [1] Lakshmikantham V.: An extension of the method of quasilinearization.J. Optim. Theory Appl. 82 (1994), 315–321. Zbl 0806.34013, MR 1286689
Reference: [2] Lakshmikantham V.: Further improvement of generalized quasilinearization.Nonlinear Anal. 27 (1996), 315–321. Zbl 0855.34012, MR 1389479
Reference: [3] Lakshmikantham V., Vatsala A. S.: Generalized Quasilinearization for Nonlinear Problems.Kluwer Academic Publishers, Dordrecht (1998). Zbl 0997.34501, MR 1640601
Reference: [4] Nieto J. J.: Generalized quasilinearization method for a second order differential equation with Dirichlet boundary conditions.Proc. Amer. Math. Soc. 125 (1997), 2599–2604. MR 1402880
Reference: [5] Cabada A., Nieto J. J., Pita-da-Veige R.: A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem.Dynam. Contin. Discrete Impuls. Systems 4 (1998), 23–30. MR 1606766
Reference: [6] Mohapatra R. N., Vajravelu K., Yin Y.: Generalized quasilinearization method for second order boundary value problems.Nonlinear Anal. 36 (1999), 799–806. Zbl 0922.34018, MR 1680293
.

Files

Files Size Format View
ArchMathRetro_041-2005-2_1.pdf 200.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo