Title:
|
On a subclass of $\alpha $-uniform convex functions (English) |
Author:
|
Acu, Mugur |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
41 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
175-180 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we define a subclass of $\alpha $-uniform convex functions by using the S’al’agean differential operator and we obtain some properties of this class. (English) |
Keyword:
|
Libera type integral operator |
Keyword:
|
$\alpha $-uniform convex functions |
Keyword:
|
S’al’agean differential operator |
MSC:
|
30C45 |
idZBL:
|
Zbl 1109.30006 |
idMR:
|
MR2164667 |
. |
Date available:
|
2008-06-06T22:45:42Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107948 |
. |
Reference:
|
[1] Acu M., Blezu D.: A preserving property of a Libera type operator.Filomat 14 (2000), 13–18. Zbl 1035.30006, MR 1953990 |
Reference:
|
[2] Duren P. L.: Univalent Functions.Springer-Verlag, 1984. Zbl 0563.30014, MR 0708494 |
Reference:
|
[3] Goodman A. W.: On uniformly convex function.Ann. Polon. Math. LVIII (1991), 86–92. MR 1145573 |
Reference:
|
[4] Magdaş I.: .Doctoral thesis, University “Babes-Bolyai" Cluj-Napoca, 1999. Zbl 1027.30029 |
Reference:
|
[5] Miller S. S., Mocanu P. T.: Differential subordinations and univalent functions.Michigan Math. J. 28 (1981), 157–171. Zbl 0439.30015, MR 0616267 |
Reference:
|
[6] Miller S. S., Mocanu P. T.: Univalent solution of Briot-Bouquet differential equations.J. Differential Equations 56 (1985), 297–308. MR 0780494 |
Reference:
|
[7] Miller S. S., Mocanu P. T.: On some classes of first order differential subordinations.Michigan Math. J. 32 (1985), 185–195. Zbl 0575.30019, MR 0783572 |
Reference:
|
[8] Mocanu P. T.: Une propriété de convexité généralisée dans la theorie de la representation conforme.Mathematica (Cluj) 11(34) (1969), 127–133. Zbl 0195.36401, MR 0273000 |
Reference:
|
[9] Ronning F.: On starlike functions associated with parabolic regions.Ann. Univ. Mariae Curie-Sklodowska, Sect. A 45(14) (1991), 117–122. MR 1322145 |
Reference:
|
[10] Sălăgean, Gr.: On some classes of univalent functions.Seminar of geometric function theory, Cluj-Napoca, 1983 |
. |