Full entry |
PDF
(0.2 MB)
Feedback

solution; resonance; multi-point boundary value problem; higher order differential equation

References:

[1] Agarwal R. P., O’Regan D., Wong P. J. Y.: **Positive solutions of differential, difference and integral equations**. Kluwer Academic, Dordrecht 1999. MR 1680024 | Zbl 1157.34301

[2] Agarwal R. P.: **Boundary value problems for higher order differential equations**. World Scientific, Singapore 1986. MR 1021979 | Zbl 0619.34019

[3] Agarwal R. P.: **Focal boundary value problems for differential and difference equations**. Kluwer, Dordrecht 1998. MR 1619877 | Zbl 0914.34001

[4] Agarwal R. P., O’Regan D., Lakshmikantham V.: **Singular $(p,n-p)$ focal and $(n,p)$ higher order boundary value problems**. Nonlinear Anal. 42 (2000), 215–228. MR 1773979 | Zbl 0977.34017

[5] Eloe P. W., Henderson J.: **Positive solutions for $(n-1,1)$ conjugate boundary value problems**. Nonlinear Anal. 28 (1997), 1669–1680. MR 1430508 | Zbl 0871.34015

[6] Feng W., Webb J. R. L.: **Solvability of three-point boundary value problems at resonance**. Nonlinear Anal. 30 (1997), 3227–3238. MR 1603039 | Zbl 0891.34019

[7] Feng W., Webb J. R. L.: **Solvability of $m$-point boundary value problems with nonlinear growth**. J. Math. Anal. Appl. 212 (1997), 467–489. MR 1464891 | Zbl 0883.34020

[8] Gupta C. P.: **A sharper conditions for the solvability of three-point second order boundary value problem**. J. Math. Anal. Appl. 205 (1997), 579–586. MR 1428372

[9] Gupta C. P.: **Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation**. J. Math. Anal. Appl. 168 (1992), 540–551. MR 1176010 | Zbl 0763.34009

[10] Il’in V., Moiseev E.: **Non-local boundary value problems of the second kind for a Sturm-Liouville operator**. Differential Equations 23 (1987), 979–987.

[11] Il’in V., Moiseev E.: **Non-local boundary value problems of first kind for a Sturm-Liouville operator in its differential and finite difference aspects**. Differential Equations 23 (1987), 803–810.

[12] Liu B.: **Solvability of multi-point boundary value problems at resonance (III)**. Appl. Math. Comput. 129 (2002), 119–143. MR 1897323

[13] Liu B.: **Solvability of multi-point boundary value problems at resonance (IV)**. Appl. Math. Comput. 143 (2003), 275–299. MR 1981696

[14] Liu B., Yu J.: **Solvability of multi-point boundary value problems at resonance (I)**. Indian J. Pure Appl. Math. 33(4) (2002), 475–494. MR 1902688 | Zbl 1021.34013

[15] Liu B., Yu J.: **Solvability of multi-point boundary value problems at resonance (II)**. Appl. Math. Comput. 136 (2003), 353–377. MR 1937938

[16] Liu Y., Ge W.: **Positive solutions for $(n-1,1)$ three-point boundary value problems with coefficient that changes sign**. J. Math. Anal. Appl. 282 (2003), 816–825. MR 1989689 | Zbl 1033.34031

[17] Liu Y., Ge W.: **Solutions of a multi-point boundary value problem for higher-order differential equations at resonance (I)**. preprint. MR 2164671 | Zbl 1147.34005

[18] Liu Y., Ge W.: **Solutions of a multi-point boundary value problem for higher-order differential equations at resonance (III)**. preprint. MR 2147408 | Zbl 1088.34010

[19] Ma R.: **Existence theorems for a second order three point boundary value problem**. J. Math. Anal. Appl. 212 (1997), 430–442. MR 1464888 | Zbl 0879.34025

[20] Ma R.: **Existence theorems for a second order $m$-point boundary value problem**. J. Math. Anal. Appl. 211 (1997), 545–555. MR 1458512 | Zbl 0884.34024

[21] Ma R.: **Positive solutions of nonlinear three-point boundary value problems**. Electron. J. Differential Equations 34 (1998), 1–8. MR 1713593

[22] Mawhin J.: **Toplogical degree methods in nonlinear boundary value problems**. in: NSFCBMS Regional Conference Series in Math., American Math. Soc. Providence, RI 1979. MR 0525202

[23] Mawhin J.: **Toplogical degree and boundary value problems for nonlinear differential equations**. in: P. M. Fitzpertrick, M. Martelli, J. Mawhin, R. Nussbanm (Eds.), Toplogical Methods for Ordinary Differential Equations, Lecture Notes in Math. 1537, Springer-Verlag, New York/Berlin, 1991. MR 1226930