Title:
|
An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications (English) |
Author:
|
Staněk, Svatoslav |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
41 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
229-241 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The linear differential equation $(q):y''=q(t)y$ with the uniformly almost-periodic function $q$ is considered. Necessary and sufficient conditions which guarantee that all bounded (on $\mathbb{R}$) solutions of $(q)$ are uniformly almost-periodic functions are presented. The conditions are stated by a phase of $(q)$. Next, a class of equations of the type $(q)$ whose all non-trivial solutions are bounded and not uniformly almost-periodic is given. Finally, uniformly almost-periodic solutions of the non-homogeneous differential equations $y''=q(t)y+f(t)$ are considered. The results are applied to the Appell and Kummer differential equations. (English) |
Keyword:
|
linear second-order differential equation |
Keyword:
|
Appell equation |
Keyword:
|
Kummer equation |
Keyword:
|
uniformly almost-periodic solution |
Keyword:
|
bounded solution |
Keyword:
|
phase |
MSC:
|
34C27 |
idZBL:
|
Zbl 1117.34043 |
idMR:
|
MR2164672 |
. |
Date available:
|
2008-06-06T22:46:02Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107953 |
. |
Reference:
|
[1] Appell P.: Sur les transformations des équations différentielles linéaires.C. R. Acad. Sci. Paris 91 (1880), 211–214. |
Reference:
|
[2] Beckenbach E. F., Bellman R.: Inequalities.Springer 1961. Zbl 0186.09606, MR 0158038 |
Reference:
|
[3] Borůvka O.: Linear differential transformations of the second order.The English Univ. Press, London 1971. MR 0463539 |
Reference:
|
[4] Borůvka O.: Sur les blocs des équations différentielles $y^{\prime \prime }=q(t)y$ aux coefficients périodiques.Rend. Mat. 8 (1975), 519–532. Zbl 0326.34007, MR 0379945 |
Reference:
|
[5] Borůvka O.: The theory of global properties of second-order ordinary differential equations.Differentsial’nye Uravneniya, 12 (1976), 1347–1383. (in Russian). MR 0440123 |
Reference:
|
[6] Corduneanu C.: Almost Periodic Functions.Wiley, New York 1968. Zbl 0175.09101, MR 0481915 |
Reference:
|
[7] Fink M. A.: Almost periodic differential equations.Springer, New York – Berlin 1974. Zbl 0325.34039, MR 0460799 |
Reference:
|
[8] Guter R. S., Kudryavtsev L. D., Levitan B. M.: Elements of the theory of functions.Pergamon Press, Oxford 1966. Zbl 0133.30401, MR 0197232 |
Reference:
|
[9] Greguš M.: Linear differential equations of the third order.North Holland, Reider Co., Dordrecht-Boston-Lancaster 1986. |
Reference:
|
[10] Haraux A.: A simple almost-periodicity criterion and applications.J. Differential Equations 66 (1987), 51–61. Zbl 0608.34049, MR 0871570 |
Reference:
|
[11] Hartman P.: Ordinary differential equations.J. Wiley, New York 1964. Zbl 0125.32102, MR 0171038 |
Reference:
|
[12] Hu Z. S., Mingarelli A. B.: On a question in the theory of almost periodic differential equations.Proc. Amer. Math. Soc. 127 (1999), 2665–2670. Zbl 0924.34039, MR 1485481 |
Reference:
|
[13] Levitan B. M.: Almost-periodic functions.G.I.T.-T.L., Moscow 1953 (in Russian). Zbl 1222.42002, MR 0060629 |
Reference:
|
[14] Lillo J. C.: Approximate similarity and almost periodic matrices.Proc. Amer. Math. Soc. 12 (1961), 400-407. Zbl 0099.29001, MR 0125127 |
Reference:
|
[15] Markus L., Moore R. A.: Oscillation and disconjugacy for linear differential equations with almost periodic coefficients.Acta mathematica 96 (1956), 99-123. Zbl 0071.08302, MR 0080813 |
Reference:
|
[16] Mingarelli A. B., Pu P. Q., Zheng L.: A Counter-example in the theory of almost periodic differential equations.Rocky Mountain J. Math. 25 (1995), 437–440. Zbl 0833.34041, MR 1340018 |
Reference:
|
[17] Rudin W.: Principles of Mathematical Analysis.McGraw-Hill, New York 1964. Zbl 0148.02903, MR 0166310 |
Reference:
|
[18] Staněk S.: On some properties of solutions of the disconjugate equation $y^{\prime \prime }=q(t)y$ with an almost periodic coefficient $q$.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 25 (1986), 31–56. Zbl 0644.34039, MR 0918368 |
. |