Previous |  Up |  Next

Article

Title: Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles (English)
Author: Palese, Marcella
Author: Winterroth, Ekkehart
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 3
Year: 2005
Pages: 289-310
Summary lang: English
.
Category: math
.
Summary: We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures. (English)
Keyword: jets
Keyword: gauge-natural bundles
Keyword: variational principles
Keyword: generalized Bianchi identities
Keyword: Jacobi morphisms
Keyword: invariance and symmetry properties
MSC: 58A20
MSC: 58A32
MSC: 58E30
MSC: 58J70
idZBL: Zbl 1112.58005
idMR: MR2188385
.
Date available: 2008-06-06T22:46:19Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107960
.
Reference: [1] Alonso R. J.: Decomposition of higher order tangent fields and calculus of variations.Proc. Diff. Geom. Appl. (Brno, 1998), 451–460, Masaryk Univ., Brno, 1999. MR 1708934
Reference: [2] Alonso R. J.: $D$-modules, contact valued calculus and Poincaré-Cartan form.Czechoslovak Math. J. 49 (124) (3) (1999), 585–606. Zbl 1011.58011, MR 1708350
Reference: [3] Anderson J. L., Bergmann P. G.: Constraints in covariant field theories.Phys. Rev. 83 (5) (1951), 1018–1025. Zbl 0045.45505, MR 0044382
Reference: [4] Allemandi G., Fatibene L., Ferraris M., Francaviglia M., Raiteri M.: Nöther conserved quantities and entropy in general relativity.In: Recent Developments in General Relativity, Genoa 2000; R. Cianci et al. eds., Springer Italia, Milano (2001), 75–92. Zbl 1202.83039, MR 1852664
Reference: [5] Bergmann P. G.: Non-linear field theories.Phys. Rev. 75 (4) (1949), 680–685. Zbl 0039.23004, MR 0028128
Reference: [6] Bergmann P. G.: Conservation laws in general relativity as the generators of coordinate transformations.Phys. Rev. 112 (1) (1958), 287–289. MR 0099236
Reference: [7] Chruściel P. T.: On the relation between the Einstein and the Komar expressions for the energy of the gravitational field.Ann. Inst. H. Poincaré 42 (3) (1985), 267–282. Zbl 0645.53063, MR 0797276
Reference: [8] Eck D. J.: Gauge-natural bundles and generalized gauge theories.Mem. Amer. Math. Soc. 247 (1981), 1–48. Zbl 0493.53052, MR 0632164
Reference: [9] Fatibene L., Francaviglia M., Raiteri M.: Gauge natural field theories and applications to conservation laws.Proc. VIII Conf. Differential Geom. Appl., O. Kowalski et al. eds.; Silesian University at Opava, Opava (Czech Republic) 2001, 401–413. Zbl 1026.70027, MR 1978794
Reference: [10] Fatibene L., Francaviglia M., Palese M.: Conservation laws and variational sequences in gauge-natural theories.Math. Proc. Cambridge Philos. Soc. 130 (2001), 555–569. Zbl 0988.58006, MR 1816809
Reference: [11] Ferraris M., Francaviglia M.: The Lagrangian approach to conserved quantities in general relativity.In: Mechanics, Analysis and Geometry: 200 Years after Lagrange; M. Francaviglia ed.; Elsevier Science Publishers B. V. (Amsterdam, 1991), 451–488. Zbl 0717.53060, MR 1098527
Reference: [12] Ferraris M., Francaviglia M., Raiteri M.: Conserved quantities from the equations of motion (with applications to natural and gauge natural theories of gravitation).Classical Quantum Gravity 20 (2003), 4043–4066. MR 2017333
Reference: [13] Francaviglia M., Palese M.: Second order variations in variational sequences.Steps in Differential Geometry (Debrecen, 2000) Inst. Math. Inform. Debrecen, Hungary (2001), 119–130. Zbl 0977.58019, MR 1859293
Reference: [14] Francaviglia M., Palese M.: Generalized Jacobi morphisms in variational sequences.In: Proc. XXI Winter School Geometry and Physics, Srní 2001, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 195–208. Zbl 1028.58022, MR 1972435
Reference: [15] Francaviglia M., Palese M., Vitolo R.: Symmetries in finite order variational sequences.Czechoslovak Math. J. 52 (127) (2002), 197–213. Zbl 1006.58014, MR 1885465
Reference: [16] Francaviglia M., Palese M., Vitolo R.: Superpotentials in variational sequences.Proc. VII Conf. Differential Geom. Appl., Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolář et al. eds.; Masaryk University in Brno (Czech Republic) 1999, 469–480. MR 1708936
Reference: [17] Francaviglia M., Palese M., Vitolo R.: The Hessian and Jacobi morphisms for higher order calculus of variations.Differential Geom. Appl. 22 (1) (2005), 105–120. Zbl 1065.58010, MR 2106379
Reference: [18] Godina M., Matteucci P.: Reductive $G$-structures and Lie derivatives.J. Geom. Phys. 47 (1) (2003), 66–86. Zbl 1035.53035, MR 1985484
Reference: [19] Goldberg J. N.: Conservation laws in general relativity.Phys. Rev. (2) 111 (1958), 315–320. Zbl 0089.20903, MR 0099235
Reference: [20] Goldschmidt H., Sternberg S.: The Hamilton-Cartan formalism in the calculus of variations.Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. Zbl 0243.49011, MR 0341531
Reference: [21] Horák M., Kolář I.: On the higher order Poincaré-Cartan forms.Czechoslovak Math. J. 33 (108) (1983), 467–475. Zbl 0545.58004
Reference: [22] Janyška J.: Natural and gauge-natural operators on the space of linear connections on a vector bundle.Proc. Differential Geom. Appl. (Brno, 1989); J Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 58–68. MR 1062006
Reference: [23] Janyška J.: Reduction theorems for general linear connections.Differential Geom. Appl. 20 (2004), no. 2, 177–196. MR 2038554
Reference: [24] Janyška J., Modugno M.: Infinitesimal natural and gauge-natural lifts.Differential Geom. Appl. 2 (2) (1992), 99–121. Zbl 0780.53023, MR 1245551
Reference: [25] Julia B., Silva S.: Currents and superpotentials in classical gauge theories, II, Global Aspects and the example of affine gravity.Classical Quantum Gravity 17 (22) (2000), 4733–4743. Zbl 0988.83026, MR 1797968
Reference: [26] Katz J.: A note on Komar’s anomalous factor.Classical Quantum Gravity 2 (3) (1985), 423–425. MR 0792031
Reference: [27] Kolář I.: On some operations with connections.Math. Nachr. 69 (1975), 297–306. MR 0391157
Reference: [28] Kolář I.: Prolongations of generalized connections.Coll. Math. Soc. János Bolyai, (Differential Geometry, Budapest, 1979) 31 (1979), 317–325. MR 0706928
Reference: [29] Kolář I.: A geometrical version of the higher order Hamilton formalism in fibred manifolds.J. Geom. Phys. 1 (2) (1984), 127–137. MR 0794983
Reference: [30] Kolář I.: Some geometric aspects of the higher order variational calculus.Geom. Meth. in Phys., Proc. Diff. Geom. and its Appl., (Nové Město na Moravě, 1983); D. Krupka ed.; J. E. Purkyně University (Brno, 1984), 155–166. MR 0793206
Reference: [31] Kolář I.: Natural operators related with the variational calculus.Proc. Differential Geom. Appl. (Opava, 1992), 461–472, Math. Publ. 1 Silesian Univ. Opava, Opava, 1993. MR 1255562
Reference: [32] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry.Springer-Verlag, N.Y., 1993. Zbl 0782.53013, MR 1202431
Reference: [33] Kolář I., Virsik G.: Connections in first principal prolongations.In: Proc. XVI Winter School Geometry and Physics, Srní 1995, Rend. Circ. Mat. Palermo (2), Suppl. 43 (1995), 163–171. MR 1463518
Reference: [34] Kolář I., Vitolo R.: On the Helmholtz operator for Euler morphisms.Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 277–290. Zbl 1048.58012, MR 2006065
Reference: [35] Komar A.: Covariant conservation laws in general relativity.Phys. Rev. 113 (3) (1959), 934–936. Zbl 0086.22103, MR 0102403
Reference: [36] Krupka D.: Variational sequences on finite order jet spaces.Proc. Diff. Geom. and its Appl. (Brno, 1989), J. Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 236–254. MR 1062026
Reference: [37] Krupka D.: Topics in the calculus of variations: finite order variational sequences.O. Kowalski and D. Krupka eds., Proc. Differential Geom. and its Appl. (Opava, 1992), Math. Publ. 1, Silesian Univ. Opava, Opava, 1993, 473–495. MR 1255563
Reference: [38] Mangiarotti L., Modugno M.: Fibered spaces, jet spaces and connections for field theories.In: Proc. Int. Meet. Geom. Phys.; M. Modugno ed.; Pitagora Editrice (Bologna, 1983), 135–165. Zbl 0539.53026, MR 0760841
Reference: [39] Nöther E.: Invariante variationsprobleme.Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918), 235–257.
Reference: [40] Palese M.: Geometric foundations of the calculus of variations. Variational sequences, symmetries and Jacobi morphisms.Ph.D. Thesis, University of Torino (2000).
Reference: [41] Palese M., Winterroth E.: .In preparation. Zbl 1233.58002
Reference: [42] Saunders D. J.: The geometry of jet bundles.Cambridge Univ. Press (Cambridge, 1989). Zbl 0665.58002, MR 0989588
Reference: [43] Trautman A.: Conservation laws in general relativity.In Gravitation: An introduction to current research, pp. 169–198, Wiley, New York 1962. MR 0143627
Reference: [44] Trautman A.: Noether equations and conservation laws.Comm. Math. Phys. 6 (1967), 248–261. Zbl 0172.27803, MR 0220470
Reference: [45] Trautman A.: A metaphysical remark on variational principles.Acta Phys. Polon. B XX (1996), 1–9. Zbl 0966.58503, MR 1388335
Reference: [46] Vitolo R.: Finite order Lagrangian bicomplexes.Math. Proc. Camb. Phil. Soc. 125 (1) (1999), 321–333. MR 1643802
.

Files

Files Size Format View
ArchMathRetro_041-2005-3_6.pdf 358.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo