# Article

Full entry | PDF   (0.2 MB)
Keywords:
nonlinear difference equation; nonoscillatory solution; second order
Summary:
We consider a second order nonlinear difference equation $\Delta ^2 y_n = a_n y_{n+1} + f(n,y_n,y_{n+1})\,,\quad n\in N\,. \qquad \mathrm {(\mbox{E})}$ The necessary conditions under which there exists a solution of equation (E) which can be written in the form $y_{n+1} = \alpha _{n}{u_n} + \beta _{n}{v_n}\,,\quad \mbox{are given.}$ Here $u$ and $v$ are two linearly independent solutions of equation $\Delta ^2 y_n = a_{n+1} y_{n+1}\,, \quad ({\lim \limits _{n \rightarrow \infty } \alpha _{n} = \alpha <\infty } \quad {\rm and} \quad {\lim \limits _{n \rightarrow \infty } \beta _{n} = \beta <\infty })\,.$ A special case of equation (E) is also considered.
References:
[1] Agarwal R. P.: Difference equations and inequalities. Theory, methods and applications. Marcel Dekker, Inc., New York 1992. MR 1155840 | Zbl 0925.39001
[2] Cheng S. S., Li H. J., Patula W. T.: Bounded and zero convergent solutions of second order difference equations. J. Math. Anal. Appl. 141 (1989), 463–483. MR 1009057
[3] Drozdowicz A.: On the asymptotic behavior of solutions of the second order difference equations. Glas. Mat. 22 (1987), 327–333.
[4] Elaydi S. N.: An introduction to difference equation. Springer-Verlag, New York 1996. MR 1410259
[5] Kelly W. G., Peterson A. C.: Difference equations. Academic Press, Inc., Boston-San Diego 1991. MR 1142573
[6] Medina R., Pinto M.: Asymptotic behavior of solutions of second order nonlinear difference equations. Nonlinear Anal. 19 (1992), 187–195. MR 1174467 | Zbl 0773.39003
[7] Migda J., Migda M.: Asymptotic properties of the solutions of second order difference equation. Arch. Math. (Brno) 34 (1998), 467–476. MR 1679641
[8] Migda M.: Asymptotic behavior of solutions of nonlinear delay difference equations. Fasc. Math. 31 (2001), 57–62. MR 1860548
[9] Migda M., Schmeidel E., Zbąszyniak M.: Some properties of solutions of second order nonlinear difference equations. Funct. Differ. Equ. 11 (2004), 147–152. MR 2056707
[10] Popenda J., Werbowski J.: On the asymptotic behavior of the solutions of difference equations of second order. Ann. Polon. Math. 22 (1980), 135–142. MR 0610341
[11] Schmeidel E.: Asymptotic behaviour of solutions of the second order difference equations. Demonstratio Math. 25 (1993), 811–819. MR 1265844 | Zbl 0799.39001
[12] Thandapani E., Arul R., Graef J. R., Spikes P. W.: Asymptotic behavior of solutions of second order difference equations with summable coefficients. Bull. Inst. Math. Acad. Sinica 27 (1999), 1–22. MR 1681601 | Zbl 0920.39001
[13] Thandapani E., Manuel M. M. S., Graef J. R., Spikes P. W.: Monotone properties of certain classes of solutions of second order difference equations, Advances in difference equations II. Comput. Math. Appl. 36 (1998), 291–297. MR 1666147

Partner of