Previous |  Up |  Next

Article

Title: A nonlinear periodic system with nonsmooth potential of indefinite sign (English)
Author: Filippakis, Michael E.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 3
Year: 2006
Pages: 205-213
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution. (English)
Keyword: locally Lipschitz function
Keyword: generalized subdifferential
Keyword: $p$-Laplacian
Keyword: homogeneous function
Keyword: variational method
Keyword: Poincare-Wirtinger inequality
Keyword: potential indefinite in sign
MSC: 34A60
MSC: 34B15
MSC: 34C25
MSC: 47J30
MSC: 47N20
idZBL: Zbl 1164.34404
idMR: MR2260378
.
Date available: 2008-06-06T22:48:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107998
.
Reference: [1] Adly S., Goeleven D.: Homoclinic orbits for a class of hemivariational inequalities.Appl. Anal. 58 (1995), 229–240. Zbl 0829.49007, MR 1383190
Reference: [2] Adly S., Goeleven D., Motreanu D.: Periodic and homoclinic solutions for a class of unilateral problems.Discrete Contin. Dynam. Systems 3 (1997), 579–590. Zbl 0948.37013, MR 1465127
Reference: [3] Adly S., Motreanu D.: Periodic solutions for second-order differential equations involving nonconvex superpotentials.J. Global Optim. 17 (2000), 9–17. Zbl 1055.34080, MR 1807964
Reference: [4] Antonacci F.: Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign.Nonlinear Anal. 29 (1997), 1353–1364. Zbl 0894.34036, MR 1484908
Reference: [5] Ben Naoum A. K., Troestler C., Willem M.: Existence and multiplicity results for homogeneous second order differential equations.J. Differential Equations 112 (1994), 239–249. Zbl 0808.58013, MR 1287560
Reference: [6] Clarke F. H.: A new approach to Lagrange multipliers.Math. Oper. Res. I (1976), 165–174. Zbl 0404.90100, MR 0414104
Reference: [7] Denkowski Z., Migorski S., Papageorgiou N. S.: An introduction to Nonlinear Analysis. Theory.Kluwer/Plenum, New York (2003). Zbl 1040.46001, MR 2024162
Reference: [8] Denkowski Z., Migorski S., Papageorgiou N. S.: An introduction to Nonlinear Analysis. Applications.Kluwer/Plenum, New York (2003). Zbl 1054.47001, MR 2024161
Reference: [9] Girardi M., Matzeu M.: Existence and multiplicity results for periodic solutions for superquadratic systems where the potential changes sign.Nonlinear Differential Equations Appl. 2 (1995), 35–61. MR 1322202
Reference: [10] Lassoued L.: Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign.Ann. Math. Pura Appl. 156 (1990), 76–111. MR 1080211
Reference: [11] Lassoued L.: Periodic solutions of a second order superquadratic system with a change of sign in the potential.J. Differential Equations 93 (1991), 1–18. Zbl 0736.34041, MR 1122304
Reference: [12] Papageorgiou E. H., Papageorgiou N. S.: Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems.Czechoslovak Math. J. 54 (2004), 347–371. Zbl 1080.34532, MR 2059256
Reference: [13] Tang C. L., Wu X. P.: Periodic solutions for second order Hamiltonian systems with a change sign potential.J. Math. Anal. 292 (2004), 506–516. Zbl 1078.34023, MR 2047627
Reference: [14] Xu Y. T., Guo Z. M.: Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign.Nonlinear Anal. 51 (2002), 1273–1283. Zbl 1157.37329, MR 1926629
.

Files

Files Size Format View
ArchMathRetro_042-2006-3_1.pdf 215.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo